• Title/Summary/Keyword: 처분용기 정치

Search Result 4, Processing Time 0.02 seconds

Development of Novel Joint Device for a Disposal Canister in Deep Borehole Disposal (고준위폐기물 심부시추공 처분을 위한 처분용기 접속장치의 개발)

  • LEE, Minsoo;LEE, Jongyoul;JI, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.261-270
    • /
    • 2018
  • In this study, to replace the 'J-slot joint', a joint device between a disposal canister and an emplacement jig in Deep Borehole Disposal process, a novel joint device was designed and tested. The novel joint device was composed of a wedge on top of a disposal canister and a hook box at the end of a winch system. The designed joint device had merits in that it can recombine an emplaced canister freely without the replacement of the joint component. Moreover, it can be applied to various emplacement jigs such as drill pipes, wire-lines, and coiled tubing. To demonstrate the designed joint device, the joint device (${\Phi}110mm$, H 148 mm), a twin canister string (${\Phi}140mm$, H 1,105 mm), and a water tube (${\Phi}150mm$, H 1,500 mm) as a borehole model were manufactured at 1/3 scale. As deployment muds, Na-type bentonite (MX-80) and Ca-type (GJ II) bentonite muds were prepared at solid contents of 7wt% and 28wt%, respectively. The manufactured joint device showed good performance in pure water and viscous muds, with an operation speed of $10m{\cdot}min^{-1}$. It was concluded that the newly developed joint device can be used for the emplacement and retrieval of a deep disposal canister, below 3~5 km, in the future.

Emplacement Process of the HLW in the Deep Geological Repository (지하처분장에서의 고준위폐기물 처분공정 개념)

  • 이종열;김성기;조동건;최희주;최종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1013-1016
    • /
    • 2004
  • High level radioactive wastes, such as spent fuels generated from nuclear power plant, will be disposed in a deep geological repository. To maintain the integrity of the disposal canister and to carry out the process effectively, the emplacement process for the canister system in borehole of disposal tunnel should be well defined. In this study, the concept of the disposal canister emplacement process for deep geological disposal was established. To do this, the spent fuel arisings and disposal rate were reviewed. Also, not only design requirements, such canister and disposal depth but also preliminary repository layout concept were reviewed. Based on the requirements and the other bases, the canister emplacement process in the borehole of the disposal tunnel was established. The established concept of the disposal canister emplacement process will be improved continuously with the future studies. And this concept can be effectively used in implementing the reference repository system of our own case.

  • PDF

Evaluation of Silicon Carbide (SiC) for Deep Borehole Disposal Canister (심부시추공 처분용기 재료로서 SiC 세라믹의 적합성 평가)

  • LEE, Minsoo;LEE, Jongyoul;CHOI, Heuijoo;YOO, MalGoBalGaeBitNaLa;JI, Sunghoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • To overcome the low mechanical strength and corrosion behavior of a carbon steel canister at high temperature condition of a deep borehole, SiC ceramics were studied as an alternative material for the disposal canister. In this paper, a design concept for a SiC canister, along with an outer stainless steel container, was proposed, and its manufacturing feasibility was tested by fabricating several 1/3 scale canisters. The proposed canister can contain one PWR assembly. The outer container was also prepared for the string formation of SiC canisters. Thermal conductivity was measured for the SiC canister. The canister had a good thermal conductivity of above $70W{\cdot}m^{-1}{\cdot}K^{-1}$ at $100^{\circ}C$. The structural stability was checked under KURT environment, and it was found that the SiC ceramics did not exhibit any change for the 3 year corrosion test at $70^{\circ}C$. Therefore, it was concluded that SiC ceramics could be a good alternative to carbon steel in application to deep borehole disposal canisters.