• Title/Summary/Keyword: 채움벽체

Search Result 64, Processing Time 0.02 seconds

Study on the Displacement of Crib Wall System (Crib Wall System 변위해석에 관한 연구)

  • Kim, Doo-Jun;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.201-209
    • /
    • 2002
  • Crib wall system is one of segmental crib type wall. Crib walls are constructed from separate members with no bonds between them other than frictional. The wall units are divide into two main types termed headers and stretchers. The headers run from the front to the back of the wall, perpendicular to the wall face. The cells are created by forming a grid by stacking individual wall components known as headers and stretchers. The body of wall consists of a system of open cell which are filled with a granular material. The design of crib retaining wall is usually based on conventional design methods derived from Rankine and Coulomb theory so that is able to resist the thrust of soil behind it, because it may be assumed that the wall acts as a rigid body. However, deformation characteristics of crib walls cannot be assumed as monolithic. They consist of individual members which have been stacked to creat a three dimensional grid. Therefore, the segmental grid allows relative movement between the individual member within the wall. The three dimensional flexible grid leads to stress distribution by interaction behavior between soil and crib wall. Therefore, in this study, in order to analysis the trends of deflection of crib wall system, new numerical models based on the results of Brandl's full scale test are introduced for design concept.

Physical and Chemical Properties of Waste Concrete Powders Originated from the Recycling Process of Waste Concrete (폐콘크리트의 재활용 공정에서 발생되는 폐콘크리트 미립분의 물리.화학적 특성)

  • Kim, Jin Man;Kang, Cheol;Kim, Ha Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • According to the great city development and the rapid growth of redevelopment project, waste concrete emission has been increased. Waste concrete powder is one of the by-product originated from the recycling of the waste concrete. The more making high quality recycled aggregate to use aggregate for concrete, the more waste concrete powder is producted relatively. Therefore, to realize the total recycling of waste concrete, development of recycling technology for waste concrete powder need very much. This technical note present the discharged process and the various properties of waste concrete powder. As the results, on the average, the maximum particle-size of waste concrete powder is less than $600{\mu}m$, and oven-dry density is less than $2.5g/cm^3$. And waste concrete powder contains more than 50% of $SiO_2$, 30% of CaO and 10% of $Al_2O_3$. Thus qualities of waste concrete powder is lower than those of high quality raw material for concrete. However, if it is processed by grading to the purpose, it will be used as resource of raw materials for construction field.

  • PDF

Structural Behavior of the Buried flexible Conduits in Coastal Roads Under the Live Load (활하중이 작용하는 해안도로 하부 연성지중구조물의 거동 분석)

  • Cho, Sung-Min;Chang, Yong-Chai
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.323-328
    • /
    • 2002
  • Soil-steel structures have been used for the underpass, or drainage systems in the road embankment. This type of structures sustain external load using the correlations with the steel wall and engineered backfill materials. Buried flexible conduits made of corrugated steel plates for the coastal road was tested under vehicle loading to investigate the effects of live load. Testing conduits was a circular structure with a diameter of 6.25m. Live-load tests were conducted on two sections, one of which an attempt was made to reinforce the soil cover with the two layers of geo-gird. Hoop fiber strains of corrugated plate, normal earth pressures exerted outside the structure, and deformations of structure were instrumented during the tests. This paper describes the measured static and dynamic load responses of structure. Wall thrust by vehicle loads increased mainly at the crown and shoulder part of the conduit. However additional bending moment by vehicle loads was neglectable. The effectiveness of geogrid-reinforced soil cover on reducing hoop thrust is also discussed based on the measurements in two sections of the structure. The maximum thrusts at the section with geogrid-reinforced soil cover was 85-92% of those with un-reinforced soil cover in the static load tests of the circular structure; this confirms the beneficial effect of soil cover reinforcement on reducing the hoop thrust. However, it was revealed that the two layers of geogrid had no effect on reducing the overburden pressure at the crown level of structure. The obtained values of DLA decrease approximately in proportion to the increase in soil cover from 0.9m to 1.5m. These values are about 1.2-1.4 times higher than those specified in CHBDC.

Computation of Passive Earth Pressure Coefficient considering Logarithmic Spiral Arc (대수나선 파괴면을 고려한 수동토압계수의 계산)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.425-433
    • /
    • 2019
  • In this study, a simple method of calculating the passive earth pressure coefficient, which is based on the limit equilibrium method, was proposed and the calculated earth pressure coefficients were compared with those of several researchers. The angle of the linear failure surface, which is combined with the logarithmic spiral arc, to the failure surfaces of the passive zone was derived and the whole passive thrust acting on the Rankine passive zone was considered in the proposed method instead of considering the horizontal component of passive thrust. The variations of the passive earth pressure coefficients of the proposed method showed the same tendency as that of the Coulomb's passive earth pressure coefficients with an inclined angle of backfill and internal friction angle. The magnitude of passive earth pressure coefficients of the proposed method were smaller than those of the Coulomb in almost all cases. A comparison of the passive earth pressure coefficients with the wall friction angle revealed the passive earth pressure coefficients of the proposed method to be smaller than those of the Coulomb and the differences between the two values increased with increasing internal friction angle and wall friction angle. A comparison of the passive earth pressure coefficients of the proposed method with those of the existing researchers for the considered internal friction angles of $25^{\circ}$, $30^{\circ}$, $35^{\circ}$, and $40^{\circ}$ and three wall friction angles revealed the maximum percentage differences for the Kerisel and Absi method, Soubra method, Lancellotta method, $Ant\tilde{a}o$ et al. method, Kame method, and Reddy et al. method to be 4.8%, 3.8%, 31.1%, 4.0%, 20.6%, and 12.8% respectively. The passive earth pressure coefficient and existing pressures were similar in all cases.