• Title/Summary/Keyword: 채움벽체

Search Result 64, Processing Time 0.026 seconds

An Experimental Study on the Influence of Masonry InFilled Walls on the Seismic Performance of Reinforced Concrete Frames with Non-seismic Details (정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가)

  • Kim, Kyoung-Min;Choen, Ju-Hyun;Baek, Eun-Rim;Oh, Sang-Hoon;Hwang, Cheol-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.114-120
    • /
    • 2017
  • In this paper, the effect of the masonry infill walls on the seismic performance of the reinforced concrete(RC) frames with non-seismic details was evaluated through the static test of an masonry infilled RC frame sub-assemblage with non-seismic details of real size, and comparison with the test results of the RC frame sub-assemblage with non-seismic details. As the test results, lots of cracks occurred on the surface of the entire frame due to the compression of the masonry infilled wall, and the beam-column joint finally collapsed with the expansion of the shear crack and buckling(exposure) of the reinforcement. On the other hand, the stiffness of the shear force-story drift relationship decreased due to the wall sliding crack and column flexural cracks, and the strength finally decreased by around 60% of the maximum strength. The damage that concentrated on the upper and lower parts of columns was dispersed in the entire frame such as columns, a beam, and beam-column joints due to the wall, and the specimen was finally collapsed by expansion of the shear crack of the joint, not the shear crack of the column. Also, the stiffness of RC frame increased by 12.42 times and the yield strength by 3.63 times, while the story drift at maximum strength decreased by 0.18 times.

Active Earth Pressure against Caisson Backfilled with Crushed Rock and Sand (I) : Formulation (사석과 모래로 뒷채움된 케이슨에 작용하는 주동토압 (I) : 정식화)

  • Paik Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.63-72
    • /
    • 2006
  • Coulomb's theory has traditionally been used for the estimation of active earth pressure acting on rigid walls. However, many experimental data show that active earth pressures on rough, rigid walls are nonlinearly distributed. This is due to the arching effects produced by friction between the wall and backfill materials when the wall translates away from the backfill. Although there are analyses that take arching into consideration f3r a horizontal backfill surface and a vertical rigid wall, these analyses were derived for homogeneous backfill. Therefore, it is not possible to use these analyses for a caisson backfilled with crushed rock and sand, a common type of rigid wall for harbor structures. In this study, a new formulation for calculation of the nonlinear active earth pressure acting on a caisson backfilled with crushed rock and sand is proposed considering both internal friction angles and unit weights of the crushed rock and sand.

Static and Dynamic Horizontal Earth Pressures against Vertical or Inclined Rigid Walls (연직 또는 경사진 강성벽체에 작용하는 정적 및 동적수평토압)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.6 no.2
    • /
    • pp.35-46
    • /
    • 1990
  • An analytical solution method is described to estimate the developed static and dynamic horizontal earth pressures behind a vertical or inclined rigid wall experiencing outward toranslational movement. The results predicted by the developed method of analysis are compared with chose from the experimental model testg on sandy. The comparisons show good agreements at various stases of wall movement. When the wall i9 inclined with a certain angle in the direction of the supported strand sass, the effects of reduction in developed static and dynamic horizontal earth pressures are also analyzed. Finally, results of analytical parametric study are presented to demonstrate the effects of various parameters, such as wall friction angle and internal strand friction angle.

  • PDF

Variation of Dynamic Earth Pressure Due to Sliding of Retaining Walls (옹벽의 활동에 따른 배면 동적토압의 변화)

  • Yoon Suk-Jae;Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.55-61
    • /
    • 2005
  • Mononobe-Okabe method is generally used to evaluate dynamic earth pressure for the seismic design of retaining walls. However, Mononobe-Okabe method does not consider the effects of dynamic interactions between backfill soil and walls. In this research, shaking table tests on retaining walls were performed to analyze the phase and magnitude of dynamic earth pressure. The unit weight of walls, the amplitude of input acceleration and the base friction coefficient of walls were varied to analyze the influence of these factors on the dynamic earth pressure. Test results showed that the dynamic earth pressure was 180 degrees out of phase with the wall inertia force for the low sliding velocity of the wall, whereas small peaks of the dynamic earth pressure, which are in phase with the wall inertia force, were developed for the high sliding velocity of the wall. The amplitude of dynamic earth pressure was proportional to that of wall acceleration and the unit weight of the wall. In addition, the dynamic earth forces calculated by the Mononobe-Okabe method were the upper limit of the dynamic earth pressures.

Earth Pressure Distribution with Rigid Retaining Wall Movements (강성토유벽의 움직임에 따른 토압분포)

  • 강병희;채승호
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-60
    • /
    • 1989
  • Lateral earth Pressure distributions due to the ,randy soil backfill behind the rigid vertical walls for three different wall movement modes are obtained by the elasto-plastic finite element analys of soil deformation, and these earth pressures are compared with both Rankine's and Dubrova's active earth pressures. Thereby, the effects of the magnitude and the mode of wall displacement on the earth pressure distribution are investigated. Three different modes of wall movement considered in this study are the rotation about bottom, the rotation about top and the translation. For the case of the wall rotation about top, the earth pressure distribution is shown as a reverse S-curve-shaped distribution due to the arching effect. Consequently, the point of application of the lateral thrust is much higher than one-third of the wall height from the base. And, comparing the other modes of wall movement, the magnitude and the point of appliestion of the lateral thrust for the wall rotation about top are larger and higher, respectively. The wedge-shaped plastic zone in the backfill at active failure is developed only for the mode of wall rotation about bottom. The lateral earth pressure distributions on the walls with inclined backfill of several different slopes are shown for the mode of wall rotation about bottom.

  • PDF

Active Eanh Pressure Against Caisson Backfilled with Crushed Rock and Sand (II) : Verification and Application (사석과 모래로 뒷채움된 케이슨에 작용하는 주동토압 (II) : 검증과 적용)

  • Paik Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2006
  • In the companion paper (Paik 2006), a new formulation for calculating the nonlinearly distributed active earth pressure acting on a caisson backfilled with crushed rock and sand is proposed, and it takes into account arching effects as well as difference in internal friction angles and unit weights between sand and crushed rock. In this study, in order to partially check the accuracy of the proposed equation, the results of the proposed equation are compared with the equation proposed by Paik (2003a) for caissons with rough surface and homogeneous backfill, and are compared with results of Rankine's theory for caissons with smooth surface and homogeneous backfill. In addition, a parametric study is performed to investigate the effect of $phi_{r}$, $phi_{s}$, $\delta_{r}$, $\gamma_{r}$, $\gamma_{s}$ and $\beta$ on the magnitude of active earth pressure acting on the caisson, and construction methods for minimizing active earth pressure on the caisson are also provided based on the results of a parametric study.

Horizontal Active Thrusts and Design of GRS-RW System for Distanced Surcharge (상재하중 이격거리를 고려한 GRS-RW 공법의 토압해석 및 설계)

  • 방윤경
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.15-29
    • /
    • 1999
  • This study presents an analytical method of estimating the developed horizontal active thrusts against GRS-RW( Geosynthetic Reinforced Soil Retaining Wall) system adapted to the case of distanced surcharge. In addition, the design charts that could be used for preliminary design of GRS-RW system are presented. The proposed method of analysis uses two body translation mechanism as well as force polygon concept. taking into account the effect of facing's rigidity. Besides. the effect of tension cracks in c-\Phi$ soils, seismic effects and horizontal distance from the back face of wall to uniformly distributed surcharge loadings are also included. The results of horizontal active thrusts obtained from the developed method of analysis are compared with those from Jarquio's modified Boussinesq equation.

  • PDF

Measurement of Verticality and Joint Gaps of a Near-surface Disposal Facility Vault Through a Mock-up Test for Fill-up Stages (표층처분시설 처분고의 목업테스트를 통한 채움단계별 수직도 및 이음부 벌어짐 측정)

  • Choi, Dong-Ho;Ann, Ki-Yong;Choi, In-Yong;Lee, Hyuk-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.537-544
    • /
    • 2021
  • In order to describe the fill-up stages of a near-surface disposal facility vault, a mock-up test is performed, and its behavior during the fil l -up stages is investigated. On an in-site concrete foundation with a l ength of 6600mm, a width of 6600mm and a thickness of 400mm, a reinforced concrete disposal vaul t is manufactured with 4 precast (PC) corner wal l s and 8 PC side wal l s. 36 wasted drums are pl aced on the 1st fl oor in 6 by 6, and then the empty space is fil l ed with grout fil l er. These processes are repeated up to the 5th floor, and the verticality and the joint gaps are measured for each fill-up stage. The verticality is measured using a level at 6 positions on each side wall (3 positions on the left and right sides, respectivel y), i.e. a total of 24 positions on the 4 side wal l s. The joint gaps are measured at 9 positions on each side wal l (3 positions on the left, center and right sides, respectively), I.e. a total 36 positions on the 4 side walls. To measure the joint gaps, crack tips are installed on the left and right sides of every joint gap, and vernier calipers are used. The measured verticality obtained through the mock-up test was found to be ±0.1° based on the initial stage (ST0), and the result of the joint gap was up to 0.38mm. This appears to have a negligible effect on the structure.

Nonlinearly Distributed Active Earth Pressure on n Translating Rigid Retaining Wall : I. Formulation (평행이동하는 강성옹벽에 작용하는 비선형 주동토압 : I. 정식화)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.181-189
    • /
    • 2003
  • The active earth pressure against a rigid retaining wall has been generally calculated using either Rankine's or Coulomb's formulation. Both assume that the distribution of active earth pressure exerted against the wall is triangular. However, many experimental results show that the distribution of the active earth pressure on a rigid rough wall is nonlinear. These results do not agree with the assumption used in both Rankine's and Coulomb's theories. The nonlinearity of the active earth pressure distribution results from arching effects in the backfill. Several researchers have attempted to estimate the active earth pressure on a rigid retaining wall, considering arching effect in the backfill. Their equations, however, have some limitations. In this paper, a new formulation for calculating the active earth pressure on a rough rigid retaining wall undergoing horizontal translation is proposed. It takes into account the arching effects that occur in the backfill.

Investigation on Behavior of Reinforced Segmental Retaining Walls (블럭식 보강토 옹벽의 거동 특성 연구)

  • 유충식;이광문
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 1999
  • Despite the frequent use of the soil-reinforced segmental retaining wall (SRW) system, the roles of the different components comprising the system, such as facing blocks, reinforcements, backfill, and block/backfill interface, are still not fully understood, and much still need to be investigated for more safe and economical design/analysis method. Therefore, this study was undertaken with the aim of understanding the effect of the shear strength of backfill material and the reinforcement stiffness on the behavior of SRW by using the finite element analysis. In the analysis the details of construction sequence and the SRW components were carefully modeled, and a parametric study was performed in order to investigate the effects of shear strength of backfill soil and reinforcement stiffness on the wall displacement and earth pressure, the vertical stress under the reinforced block, the reinforcement and block/reinforcement connection forces. Implications of the findings from this study to current design practices were discussed in detail.

  • PDF