• Title/Summary/Keyword: 채널 주기성

Search Result 120, Processing Time 0.023 seconds

An Energy Efficient and Low Latency MAC Protocol Using RTS Aggregation for Wireless Sensor Networks (무선 센서 네트워크에서 RTS 통합을 이용한 에너지 효율성과 낮은 지연을 갖는 MAC 프로토콜)

  • Lee, Dong-Ho;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.4
    • /
    • pp.326-336
    • /
    • 2008
  • Wireless sensor networks have been studied with two typical applications called event-driven and periodic monitoring. Although these applications have different core requirements, they have the same low latency requirement. However, main issue of the protocol in wireless sensor networks was focused on an energy efficiency, so it has not considered the latency problem. In this paper, we propose the RA-MAC, an energy efficient and low latency MAC protocol using a new channel access mechanism and the RTS Aggregation scheme for wireless sensor networks. Our simulation results show that the RA-MAC provides energy savings and latency reduction.

Mechanism of Windowing of Domestic Free TV Programs (국내 지상파 방송 콘텐츠의 창구화 메커니즘 분석)

  • Lee, Moon-Haeng
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.190-197
    • /
    • 2009
  • Domestic free TVs play roles as for contents provider and TV station : they need to acquire not only ad revenues but also distribution revenues from internet service, cable channel and DMB. It is however doubtful to keep the windowing of programs through the different windows due to recent decrease of ad revenues of the stations. Therefore, the purpose of this study is to search for the mechanism of windowing of free TV's programs and the strategy of the distribution. As a result, the life cycle of the broadcasting programs is so short to be distributed within 7 days, Regarding the windowing, there are at first the strategy increasing the accumulated revenue by the diversification of the windows ; secondly, the strategy focusing on the prospective window neglecting the holdback. It is necessary to choose to take the appropriate strategy by the particularity of each program and the market background.

Nondestructive Examination of PHWR Pressure Tube Using Eddy Current Technique (와전류검사 기술을 적용한 가압중수로 원전 압력관 비파괴검사)

  • Lee, Hee-Jong;Choi, Sung-Nam;Cho, Chan-Hee;Yoo, Hyun-Joo;Moon, Gyoon-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.254-259
    • /
    • 2014
  • A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter ${\times}$ 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the $D_2O$ heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.

Optical fiber grating dynamic sensor system using tunable narrow bandpass filter demodulator (파장 가변 협대역 투과 필터를 이용한 광섬유 격자 동적 센서 시스템)

  • 구현덕;이상배;최상삼;송석호;김필수;조남소;김남식
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.91-97
    • /
    • 2001
  • We present a fiber Bragg grating (FBG) sensor system for measuring static and high-speed dynamic strains with a resolution of about $5\mu$strain. This sensor system demodulates signals from the FBG sensor utilizing a compensated tunable narrow bandpass filter. We have placed a set of twelve FBGs to concrete specimen and measured its internal stress under various applied load conditions.itions.

  • PDF

GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis (GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석)

  • Minsang Kim;Myung-Sook Park;Jae-Hyun Ahn;Gm-Sil Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1541-1551
    • /
    • 2023
  • Radiometric calibration is a fundamental step in ocean color remote sensing since the step to derive solar radiance spectrum in visible to near-infrared wavelengths from the sensor-observed electromagnetic signals. Generally, satellite sensor suffers from degradation over the mission period, which results in biases/uncertainties in radiometric calibration and the final ocean products such as water-leaving radiance, chlorophyll-a concentration, and colored dissolved organic matter. Therefore, the importance of radiometric calibration for the continuity of ocean color satellites has been emphasized internationally. This study introduces an approach to improve the radiometric calibration algorithm for the visible bands of the Geostationary Ocean Color Imager-II (GOCI-II) satellite with a focus on stability. Solar Diffuser (SD) measurements were employed as an on-orbit radiometric calibration reference, to obtain the continuous monitoring of absolute gain values. Time series analysis of GOCI-II absolute gains revealed seasonal variations depending on the azimuth angle, as well as long-term trends by possible sensor degradation effects. To resolve the complexities in gain variability, an azimuth angle correction model was developed to eliminate seasonal periodicity, and a sensor degradation correction model was applied to estimate nonlinear trends in the absolute gain parameters. The results demonstrate the effects of the azimuth angle correction and sensor degradation correction model on the spectrum of Top of Atmosphere (TOA) radiance, confirming the capability for improving the long-term stability of GOCI-II data.

Efficient Security Mechanism using Light-weight Data Origin Authentication in Sensor Networks (경량화 데이터 origin 인증을 통한 효율적인 센서 네트워크 보안에 관한 연구)

  • Park, Min-Ho;Lee, Chung-Keun;Son, Ju-Hyung;Seo, Seung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.717-723
    • /
    • 2007
  • There are many weaknesses in sensor networks due to hardware limitation of sensor nodes besides the vulnerabilities of a wireless channel. In order to provide sensor networks with security, we should find out the approaches different from ones in existing wireless networks; the security mechanism in sensor network should be light-weighted and not degrade network performance. Sowe proposed a novel data origin authentication satisfying both of being light-weighted and maintaining network performance by using Unique Random Sequence Code. This scheme uses a challenge-response authentication consisting of a query code and a response code. In this paper, we show how to make a Unique Random Sequence Code and how to use it for data origin authentication.

Efficient Security Mechanism using Light-weight Data Origin Authentication in Sensor Networks (경량화 데이터 Origin 인증을 통한 효율적인 센서 네트워크 보안에 관한 연구)

  • Park, Min-Ho;Lee, Chung-Keun;Son, Ju-Hyung;Seo, Seung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.402-408
    • /
    • 2007
  • There are many weaknesses in sensor networks due to hardware limitation of sensor nodes besides the vulnerabilities of a wireless channel. In order to provide sensor networks with security, we should find out the approaches different from ones in existing wireless networks; the security mechanism in sensor network should be light-weighted and not degrade network performance. Sowe proposed a novel data origin authentication satisfying both of being light-weighted and maintaining network performance by using Unique Random Sequence Code. This scheme uses a challenge-response authentication consisting of a query code and a response code. In this paper, we show how to make a Unique Random Sequence Code and how to use it for data origin authentication.

Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006 (2006년 발생한 고속 태양풍과 관련된 정지궤도에서의 상대론적 전자 증가 이벤트)

  • Lee, Sung-Eun;Hwang, Jung-A;Lee, Jae-Jin;Cho, Kyung-Suk;Kim, Khan-Hyuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.439-450
    • /
    • 2009
  • Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs) were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1) High speed stream, (2) Pc5 ULF wave activity, (3) Southward IMF Bz, (4) substorm occurrence, (5) Whistler mode chorus wave, and (6) Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

Efficient Digital Signal Processing of DTV TxID Based On Decimation Algorithm (Decimation 알고리즘을 이용한 DTV TxID수신 신호의 효율적인 신호처리 기법에 관한 연구)

  • Son, Ju-Hee;Lee, Yong-Tae;Park, Sung-Ik;Kim, Heung-Mook;Seo, Jae-Hyun;Lee, Jae-Young;Cha, Jae-Sang
    • Journal of Broadcast Engineering
    • /
    • v.12 no.3
    • /
    • pp.266-277
    • /
    • 2007
  • Recently, Transmitter Identification(TxID) technology has been issued as a technology of ATSC DTV. ATSC DTV networks are comprised of a plurality of transmitters, broadcasting the same signal sing one frequency network(SFN) connected to EDOCR. In this single frequency network, TxID technology has been recognized as a technology in the ATSC DTV system since it enables the broadcast authorities and classify multiple transmitters. However, conventional TxID uses extremely long spreading sequence to identifying transmitters, so it increases H/W complexity and registers. Thus, to solve those hardware problems, we propose an efficient signal processing technology using decimation algorithm. Furthermore, we certified the availability of the proposed algorithm via various simulations.

Performance Analysis of MAP Algorithm by Robust Equalization Techniques in Nongaussian Noise Channel (비가우시안 잡음 채널에서 Robust 등화기법을 이용한 터보 부호의 MAP 알고리즘 성능분석)

  • 소성열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9A
    • /
    • pp.1290-1298
    • /
    • 2000
  • Turbo Code decoder is an iterate decoding technology, which extracts extrinsic information from the bit to be decoded by calculating both forward and backward metrics, and uses the information to the next decoding step Turbo Code shows excellent performance, approaching Shannon Limit at the view of BER, when the size of Interleaver is big and iterate decoding is run enough. But it has the problems which are increased complexity and delay and difficulty of real-time processing due to Interleaver and iterate decoding. In this paper, it is analyzed that MAP(maximum a posteriori) algorithm which is used as one of Turbo Code decoding, and the factor which determines its performance. MAP algorithm proceeds iterate decoding by determining soft decision value through the environment and transition probability between all adjacent bits and received symbols. Therefore, to improve the performance of MAP algorithm, the trust between adjacent received symbols must be ensured. However, MAP algorithm itself, can not do any action for ensuring so the conclusion is that it is needed more algorithm, so to decrease iterate decoding. Consequently, MAP algorithm and Turbo Code performance are analyzed in the nongaussian channel applying Robust equalization technique in order to input more trusted information into MAP algorithm for the received symbols.

  • PDF