• Title/Summary/Keyword: 채널보상

Search Result 524, Processing Time 0.026 seconds

Power optimization of optical 40 wavelength division multiplexing channels at 3000 km transmission for link span variation (40 채널 파장 다중화 광신호 3000 km 전송에서 링크 구간 거리에 따른 광신호 세기 최적화)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.197-203
    • /
    • 2013
  • Optical power optimization of 10 Gbps 40 wavelength division multiplexing channels was analyzed at the 3000 km long-haul transmission distance when the link span distance was changed between 40 km and 140 km. The signal performance of the transmission was obtained as a Q value and it was compared when input power into SSMF and input power into DCF on the transmission link were changed. The optimized input power into SSMF increased linearly to link span distance with 1 dB/km. The optimized power into DCF increased linearly with 0.5 dB/km up to 100 km link span, but it had no variation at longer link span than 100 km.

A Process Detection Circuit using Self-biased Super MOS composit Circuit (자기-바이어스 슈퍼 MOS 복합회로를 이용한 공정 검출회로)

  • Suh Benjamin;Cho Hyun-Mook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • In this paper, a new process detection circuit is proposed. The proposed process detection circuit compares a long channel MOS transistor (L > 0.4um) to a short channel MOS transistor which uses lowest feature size of the process. The circuit generates the differential current proportional to the deviation of carrier mobilities according to the process variation. This method keep the two transistor's drain voltage same by implementing the feedback using a high gain OPAMP. This paper also shows the new design of the simple high gam self-biased rail-to-rail OPAMP using a proposed self-biased super MOS composite circuit. The gain of designed OPAMP is measured over 100dB with $0.2{\sim}1.6V$ wide range CMR in single stage. Finally, the proposed process detection circuit is applied to a differential VCO and the VCO showed that the proposed process detection circuit compensates the process corners successfully and ensures the wide rage operation.

  • PDF

A Performance Evaluation of FC-MMA Adaptive Equalization Algorithm by Step Size (스텝 크기에 의한 FC-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.27-32
    • /
    • 2021
  • This paper evaluates the equalization performance of FC-MMA adaptive equalization algorithm by the fixed step size that is used for the minimization of the intersymbol interference which occurs in the time dispersive communication channel. The FC-MMA has a fast convergence speed in order to adapts the new environment more rapidly in case of the time varying charateristics and the abnormal situation like as outage of the communication channel. But the algorithms operates in adative method, convegence speed is depend on fixed step size for adaptation. For this situation, its performance was evaluated by changing the step size value, the residual isi and maximum distortion and MSE performance index which means the convergence characteristics are widely adapted in the adaptive equalizer, SER were applied. As a result of computer simulation, the large step size can improves the convergence speed for reaching the steady state, but has a poor performance compared to small step size in residual values after steady state. The research result shows that the FC-MMA algorithm is applied the large step size for rapidly reaching the steady state in initial time, then adjust the small step size after reaching the steady state for reducing the residual values for equalization.

A Performance Evaluation of QE-MMA Adaptive Equalization Algorithm by Quantizer Bit Number (양자화기 비트수에 의한 QE-MMA 적응 등화 알고리즘 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.57-62
    • /
    • 2019
  • This paper evaluates the QE-MMA (Quantized Error-MMA) adaptive equalization algorithm by the number of quantizer in order to compensates the intersymbol interference due to channel in the transmission of high spectral efficient nonconstant modulus signal. In the adaptive equalizer, the error signal is needed for the updating the tap coefficient, the QE-MMA uses the polarity of error signal and correlation multiplier that condered nonlinear finite bit power-of-two quantizing component in order to convinience of H/W implementation. The different adaptive equalization performance were obtained by the number of quantizer, these performance were evaluated by the computer simulation. For this, the equalizer output signal constellation, residual isi, maximum distortion, MSE, SER were applied as a performance index. As a result of computer simulation, it improved equalization performance and reduced equalization noise were obtained in the steady state by using large quantizer bit numbers, but gives slow in convergence speed for reaching steady state.

A Robustness Performance Improvement of MMA Adaptive Equalization Algorithm in QAM Signal Transmission (QAM 신호 전송에서 MMA 적응 등화 알고리즘의 Robustness 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.85-90
    • /
    • 2019
  • This paper related with the M-CMA adaptive equalization algorithm which is possible to improve the residual isi and robustness performance compare to the current MMA algorithm that is reduce the intersymbol interference occurs in channel when transmitting the QAM signal. The current MMA algorithm depend on the cost function and error function using fixed signal dispersion constant, but the M-CMA algorithm depend on the new proposed cost function and error function using multiple dispersion constant. By this, it is possible to having robustness of the CMA and simultaneous compensation of amplitude and phase of MMA. The computer simulation was performed in the same channel and noise environment for compare the proposed M-CMA and current MMA algorithm. The equalizer output signal constellation, residual isi, MD, MSE learning courves and SER, represents the robustness were used for performance index. As a result of simulation, the M-CMA has more superior to the MMA in robustness and other performance index.

A New Adaptive Kernel Estimation Method for Correntropy Equalizers (코렌트로피 이퀄라이져를 위한 새로운 커널 사이즈 적응 추정 방법)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.627-632
    • /
    • 2021
  • ITL (information-theoretic learning) has been applied successfully to adaptive signal processing and machine learning applications, but there are difficulties in deciding the kernel size, which has a great impact on the system performance. The correntropy algorithm, one of the ITL methods, has superior properties of impulsive-noise robustness and channel-distortion compensation. On the other hand, it is also sensitive to the kernel sizes that can lead to system instability. In this paper, considering the sensitivity of the kernel size cubed in the denominator of the cost function slope, a new adaptive kernel estimation method using the rate of change in error power in respect to the kernel size variation is proposed for the correntropy algorithm. In a distortion-compensation experiment for impulsive-noise and multipath-distorted channel, the performance of the proposed kernel-adjusted correntropy algorithm was examined. The proposed method shows a two times faster convergence speed than the conventional algorithm with a fixed kernel size. In addition, the proposed algorithm converged appropriately for kernel sizes ranging from 2.0 to 6.0. Hence, the proposed method has a wide acceptable margin of initial kernel sizes.

The Experimental Verification of Adaptive Equalizers with Phase Estimator in the East Sea (동해 연근해에서 위상 추정기를 갖는 적응형 등화기의 실험적 성능 검증)

  • Kim, Hyeon-Su;Choi, Dong-Hyun;Seo, Jong-Pil;Chung, Jae-Hak;Kim, Seong-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.229-236
    • /
    • 2010
  • Phase coherent modulation techniques in underwater acoustic channel can improve bandwidth efficiency and data reliability, but they are made difficult by time-varying intersymbol interference. This paper proposes an adaptive equalizer combined with phase estimator which compensates distortions caused by time-varying multipath and phase variation. The experiment in the East sea demonstrates phase coherent signals are distorted by time-varying multipath propagation and the proposed scheme equalizes them. Bit error rate of BPSK and QPSK are 0.0078 and 0.0376 at 300 meter horizontal distance and 0.0146 and 0.0293 at 1000 meter respectively.

Influences and Compensation of Phase Noise and IQ Imbalance in Multiband DFT-S OFDM System for the Spectrum Aggregation (스펙트럼 집성을 위한 멀티 밴드 DFT-S OFDM 시스템에서 직교 불균형과 위상 잡음의 영향 분석 및 보상)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon;Choi, Jin-Kyu;Kim, Jin-Up
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1275-1284
    • /
    • 2010
  • 100 MHz bandwidth and 1 Gbit/s data speed are needed in LTE-advanced for the next generation mobile communication system. Therefore, spectrum aggregation method has been studied recently to extend usable frequency bands. Also bandwidth utilization is increased since vacant frequencies are used to communicate. However, transceiver structure requires the digital RF and SDR. Therefore, frequency synthesizer and PA must operate over wide-bandwidth and RF impairments also increases in transceiver. Uplink of LTE advanced uses DFT-S OFDM using plural power amplifier. The effect of ICI increases in frequency domain of receiver due to phase noise and IQ imbalance. In this paper, we analyze influences of ICI in frequency domain of receiver considering phase noise and IQ imbalance in multiband system. Also, we separate phase noise and IQ imbalance effect from channel response in frequency domain of uplink system. And we propose a method to estimate the channel exactly and to compensate IQ imbalance and phase noise. Simulation result shows that the proposed method achieves the 2 dB performance gain of BER=$10^{-4}$.

The Gain and Phase Mismatch Detection Method with Closed Form Solution for LINC System Implementation (LINC 시스템 구현을 위한 닫힌 해를 갖는 크기 위상 오차 검출 기법)

  • Myoung, Seong-Sik;Lee, Il-Kyoo;Lim, Kyu-Tae;Yook, Jong-Gwan;Laskar, Joy
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.547-555
    • /
    • 2008
  • This parer proposed the path mismatch detection and compensation algorithm with closed form for linear amplification with non-linear components(LINC) system implementation. The LINC system has a merit of using the high efficient amplifier by transferring the non-constant envelop signal which is high peak to average signal ratio into constant envelop signal. However, the performance degradation is very sensitive to the path mismatch such as an amplitude mismatch and a phase mismatch. In order to improve the path mismatch, the error detection and compensation method is introduced by the use of four test signals. Since the presented method has the closed form solution, the efficient and fast detection is available. The digital-IF structure of LINC system applied by the proposed error detection and compensation algorithm was implemented. The performance was evaluated with the IEEE 802.16 WiMAX baseband sinal which has 7 MHz channel bandwidth and 16-QAM. The Error Vector Magnitude(EVM) of -37.37 dB was obtained through performance test, which meets performance requirement of -24 dB EVM. As a result, the introduced error detection and compensation method was verified to improve the LINC system performance.

Low Complexity Video Encoding Using Turbo Decoding Error Concealments for Sensor Network Application (센서네트워크상의 응용을 위한 터보 복호화 오류정정 기법을 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hyuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • In conventional video coding, the complexity of encoder is much higher than that of decoder. However, as more needs arises for extremely simple encoder in environments having constrained energy such as sensor network, much investigation has been carried out for eliminating motion prediction/compensation claiming most complexity and energy in encoder. The Wyner-Ziv coding, one of the representative schemes for the problem, reconstructs video at decoder by correcting noise on side information using channel coding technique such as turbo code. Since the encoder generates only parity bits without performing any type of processes extracting correlation information between frames, it has an extremely simple structure. However, turbo decoding errors occur in noisy side information. When there are high-motion or occlusion between frames, more turbo decoding errors appear in reconstructed frame and look like Salt & Pepper noise. This severely deteriorates subjective video quality even though such noise rarely occurs. In this paper, we propose a computationally extremely light encoder based on symbol-level Wyner-Ziv coding technique and a new corresponding decoder which, based on a decision whether a pixel has error or not, applies median filter selectively in order to minimize loss of texture detail from filtering. The proposed method claims extremely low encoder complexity and shows improvements both in subjective quality and PSNR. Our experiments have verified average PSNR gain of up to 0.8dB.