• Title/Summary/Keyword: 채널기반

Search Result 3,016, Processing Time 0.035 seconds

Blind Channel Estimation based on Hadamard Matrix Interstream Transmission for Multi-Cell MIMO Networks (다중 셀 MIMO 네트워크를 위한 Hadamard 행렬 Interstream 전송 기반 Blind 채널 추정)

  • Yang, Jae-Seung;Hanif, Mohammad Abu;Park, Ju-Yong;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.119-125
    • /
    • 2015
  • In this paper, we introduce a Hadamard matrix interstream transmission based blind channel estimation for multi-cells multiple-input and multiple-output (MIMO) networks. The proposed scheme is based on a network with mobile stations (MS) which are deployed with multi cells. We assume that the MS have the signals from both cells. The signal from near cell are considered as desired signal and the signals from the other cells are interference signal. Since the channel is blind, so that we transmit Hadamard matrix pattern pilot stream to estimate the channel; that gives easier and fast channel estimation for large scale MIMO channel. The computation of Hadamard based system takes only complex additions, and thus the complexity of which is much lower than the scheme with Fourier transform since complex multiplications are not needed. The numerical analysis will give perfection of proposed channel estimation.

IPTV Channel Package Delivery in EPONs Using ONU-Based Multicast Emulation (EPON망에서 ONU기반 멀티캐스트를 이용한 IPTV 채널 패키지 전송 서비스)

  • Choi, Su-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4B
    • /
    • pp.224-231
    • /
    • 2008
  • EPONs are a low cost, high speed solution to the bottleneck problem of broadband access networks. To support point-to-point and shared LAN emulation, EPONs use the multi-point control protocol (MPCP), which uses logical link identification (LLID) for frame tagging and filtering between the OLT and ONUs. In this paper, ONU-based multicast or multiple shared LAN emulation is used for IPTV channel package delivery services. Using ONU-based VLAN services, EPONs can support separate and secure connections between providers and subscribers in a simple manner. Also, IPTV channel packages can be delivered through EPONs by implementing ONU-based VLAN and IGMP snooping mechanisms. By showing fast channel zapping time of proposed architecture, I show that EPONs is suitable for IPTV channel package delivery service.

An Interference Canceller-based Digital On-Channel Repeater to Improve Feedback Channel Estimation and RFP Performance (귀환 채널 추정 및 RFP 성능을 개선한 간섭 제거 기반의 동일 채널 중계기)

  • Choi, Soocheol;Cho, Kiryang
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.261-267
    • /
    • 2016
  • In this paper, Method for the phase distortion compensation timing offset and DC eliminator for the pilot component estimation and removal, transmitted and received signal correlation in the delay scheme DAB interference cancellation based on the same channel for using for estimating the feedback signal based on a between for removal for the timing offset compensation It proposes a repeater. This was applied to the ATSC system. The on-channel repeater of the proposed interference cancellation based on the interference removing capability is improved in interference signal is 20dB greater than the primary transmission signal environment via the return channel estimation and improve performance RFP. Accordingly, it was confirmed by simulation that good signal is sent out with the improvement of the ability of the repeater.

Reservation based Multichannel CSMA Protocol for Improvement of Energy Consumption and QoS in Wireless Sensor Networks (무선 센서 네트워크 환경에서 에너지 소비 및 QoS를 고려한 예약기반 Multichannel CSMA 프로토콜)

  • Han, Jung-Ahn;Kim, Yun-Hyung;Lee, Moon-Ho;Kim, Byung-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.143-151
    • /
    • 2007
  • One of the consideration things to design protocol in wireless sensor networks is to maximize lifetime of sensor node as reducing energy consumption. In this paper propose reserve based multichannel CSMA mac protocol for minimizing energy consumption which arise from collision and waiting retransmission at channel access process in mac layer Each sensor node which constitute sensor networks has data channel and control channel. And as sensor node reserve channel for data transmission by using control channel and receipt node allow reservation node to use data channel, sending node can abbreviate try of retransmission after random interval time. Also, When sending node delivers selects option channel in available channels to receipt node, the receipt node decide whether the channel is available to oneself and through the result select transmission channel ultimately. Performance evaluation compare with previous simple multichannel CSMA.

Policy-based Dynamic Channel Selection Architecture for Cognitive Radio Network (무선인지 기술 기반의 정책에 따른 동적 채널 선택 구조)

  • Na, Do-Hyun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.358-366
    • /
    • 2007
  • Recently, FCC(Federal Communications Commission) has considered for that unlicensed device leases licensed devices' channel to overcome shortage of communication channels. Therefore, IEEE 802.22 WRAN(Wireless Regional Area Networks) working group progresses CR (Cognitive Radio) technique that is able to sense and adopt void channels that are not being occupied by the licensed devices. Channel selection is of the utmost importance because it can affect the whole system performance in CR network. Thus, we propose a policy-based dynamic channel selection architecture for cognitive radio network to achieve an efficient communication. We propose three kinds of method for channel selection; the first one is weighted channel selection, the second one is sequential channel selection, and the last one is combined channel selection. We can obtain the optimum channel list and allocates channels dynamically using the proposed protocol.

Channel Set Manager Development and Performance Analysis for Cognitive Radio System (인지 무선 시스템을 위한 채널 집합 관리기의 개발 및 성능 분석)

  • Park, Chang-Hyun;Song, Myung-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.8-14
    • /
    • 2008
  • There are two a approaches for the Cognitive Radio(CR) development. One is 'Full CR', which Joseph Mitola III proposed, and another is 'Spectrum CR', which is currently being standardized. The target approach of this paper is the latter and we develop a Cognitive Engine(CE) and simulated a channel set management(CSM), which is a core function of CE. The Channel set management evaluates channel quality and Incumbent User(IU) vacancy possibility and classifies the channel set, which is performed by using channel state history. Especially, a very important function for the channel set management is a channel state prediction and this paper proposed a Hidden Markov Model(HMM) based channel state prediction and a method for increasing performance. Also, we applied the proposed method into our simulator and simulated channel state prediction. Through the simulation, we verified as we applied our proposed scheme, the performance of channel state prediction gets better and through comparing with RS and SS, we verified the HMM based Channel state prediction is better.

Optimal EEG Channel Selection using BPSO with Channel Impact Factor (Channel Impact Factor 접목한 BPSO 기반 최적의 EEG 채널 선택 기법)

  • Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.774-779
    • /
    • 2012
  • Brain-computer interface based on motor imagery is a system that transforms a subject's intention into a control signal by classifying EEG signals obtained from the imagination of movement of a subject's limbs. For the new paradigm, we do not know which positions are activated or not. A simple approach is to use as many channels as possible. The problem is that using many channels causes other problems. When applying a common spatial pattern (CSP), which is an EEG extraction method, many channels cause an overfit problem, in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest a binary particle swarm optimization with channel impact factor in order to select channels close to the most important channels as channel selection method. This paper examines whether or not channel impact factor can improve accuracy by Support Vector Machine(SVM).

High-Speed and High-Quality Haze Removal Method Based on Dual Dark Channels (이중 다크 채널에 기반한 고속 고품질의 안개 제거 방법)

  • Moon, Sun-A;Kim, Won-Tae;Kim, Tae-Hwan
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.697-705
    • /
    • 2015
  • This paper proposes a high-speed and high-quality haze removal method based on dual dark channels. In the conventional method, the halo artifacts are suppressed by the additional transmission refinement, but the transmission refinement is computationally intensive and the quality of the haze removal is sometimes unsatisfactory because of the residual halo artifacts. In the proposed method, the transmission is estimated with the mixture of the two dark channels with different window size. By mixing the two dark channels so as to avoid the halo artifacts, the proposed method realizes a high-quality haze removal even without the transmission refinement. Experimental results demonstrate that the quality of the results by the proposed method is superior to those by the conventional method and the speed of the haze removal is about 14.2 times higher than that of the conventional method.

Channel State Information Feedback Scheme Based on Non-Convex Compressed Sensing for Massive MIMO Systems (거대 다중 안테나 시스템을 위한 넌컨벡스 압축센싱 기반채널 정보 피드백 기법)

  • Kim, Jung-Hyun;Kim, Inseon;Park, Jin Soo;Song, Hong-Yeop;Han, Sung Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.628-636
    • /
    • 2015
  • In this paper, we propose a non-convex compressed sensing(NCCS)-based channel state information(CSI) feedback scheme for massive multiple-input multiple-output(MIMO) systems. Combining the random vector quantization(RVQ), the proposed scheme permits a transmitter to obtain CSI with acceptable accuracy under substantially reduced feedback load. Furthermore, it recovers CSI from fewer measurements than that of existing convex compressed sensing(CCS)-based schemes even if the measurements are inaccurate and incomplete. Simulation results show that the proposed scheme achieves higher throughput than both existing CCS-based feedback scheme and random vector quantization(RVQ) feedback scheme with the same feedback load.