• Title/Summary/Keyword: 창조/낙조

Search Result 67, Processing Time 0.019 seconds

Analysis of a Change of Hydrodynamic Environments due to the Port Developments in the Intertidal Zone (조간대 발달영역에서 개발에 따른 유동환경변화 해석)

  • Jung, Jae-Hyun;Lee, Joong-Woo;Jeong, Young-Hwan;Jun, Sung-Hwan;Kim, Kang-Min
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.689-695
    • /
    • 2007
  • The under developing estuarial port Bupsung is bounded by a river and the sea, and has several well developed tidal lands, where the littoral drift is strong due to the tide and the river discharge. The study area is located at the inner part of a concave bay and has a large tidal range due to the water discharge through the Watan-chun and Junnam-dike. In beginning stage of the ocean physical impact study, the tidal modeling is very important and difficult especially in this area. Moreover, we need a model experiment after the verification of the formulated model based on ocean survey. In this study, we constructed a numerical model to the Bupsung port coastal boundaries, which varies with the past and future development and made simulation with it. The result after development shows that there is a decrease of velocity on flood current and a increase on Ebb current and the minor variation of the tide level, compared with before development.

Sedimentology of Inclined Heterolithic Stratification in Sukmo Channel, Kyonggi Bay, Korea - Application to Oil Sand Exploration (경기만 석모수도 수로제방 조간대층에 발달하는 경사이질암상층리의 퇴적학적 연구 - 오일샌드 탐사 적용가능성)

  • Choi, Kyung-Sik;Dalrymple, R.W.;Chun, Seung-Soo;Kim, Sung-Pil;Park, Se-Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.11 no.1 s.12
    • /
    • pp.18-26
    • /
    • 2005
  • An occurrence of inclined heterolithic stratification (IHS) is described from a tidal point bar in a 40-m-deep distributary of the macrotidai, Han River delta, Korea. The channel bank demonstrates a convex-upward profile with intermittent presence or wave-formed scarps and terraces near the low-water level. The vertical succession of IHS is approximately 25 m thick and dips into the channel with angles reaching up to $14^{\circ}C$. The IHS overlies 15 m of trough cross-bedded sand deposited in the channel bottom. Even though the channel as a whole is ebb dominated, the preserved cross bedding is predominantly flood directed because the mutually evasive nature of the ebb and flood currents causes the point bar surface to be flood dominated. The IHS itself consists of inter-stratified fine sand, sandy silt, and silt with an fining-upward textural trend. Seasonal discharge variations of the Han River are not obvious in the deposits, because tile large size, distal location, and energetic tidal environment of the studied channel reduces the impart of river-stage fluctuations.

  • PDF

A Study on the Characteristics of Summer Water Temperature Fluctuations by Spectral Analysis in Coast of Korea in 2016 (스펙트럼 분석을 통한 2016년 하계 한국연안의 수온변동 특성에 관한 연구)

  • Seo, Ho-San;Jeong, Yong-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.186-194
    • /
    • 2020
  • In this study, spectral analysis was conducted to identify environmental factors af ecting short-term changes in water temperature in the East, West and South coasts of Korea. The data used in the spectrum analysis is the 2016 summer water temperature, air temperature, tide level and wind data provided by Korea Hydrographic & Oceanographic Agency. In power spectrum results, peaks of water temperature and tide level were observed at same periods in West Sea (Incheon, Pyeungteak, Gunsan and Mokpo) and South Sea (Wando, Goheung, Yeosu, Tongyeong and Masan) where mean tidal range was more than 100 cm. On the other hand, periodicity of water temperature did not appear in East Sea and Busan where the mean tidal range was small. Coherence analysis showed that water temperature was highly correlated with tide in West Sea and three stations(Wando, Goheung and Tongyeong) of South Sea. Especially, correlation between water temperature and tide level in Wando and Tongyeong presented 0.96 at semi-diurnal period. Water temperature in Yeosu seems to have influenced by tide and inflow of fresh water. In Masan, water temperature is influenced by south wind, tide and inflow of fresh water. In East Sea, influence of tide on water temperature is small due to current and small tidal range. As a result of comparing the time series graph, stations where the correlation between water temperature and tide is high show that relatively cold water was inputted at flood tide and flow out at ebb tide. short-term variation of water temperature was affected by tide, but long-term variation over a month was affected by air temperature.

Design Wave Transformation in Finite Depth due to Wave-Current Interaction (파랑-해류 상호작용에 의한 천해 설계파랑 변형)

  • Kang, See-Whan;Ahn, Suk-Jin;Eom, Hyun-Min;Cho, Hyu-Sang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.308-315
    • /
    • 2009
  • Wave-current interaction due to strong ambient currents causes to alter wave properties such as wave height, wave profile and wave spectrum. In this study we first examined the SWAN model's applicability by comparing with an analytical solution of Suh et al. (1994) for wave-current interaction in finite water-depth. Numerical experiments using SWAN model have been conducted for Garolim Bay to estimate the design waveheights influenced by strong tidal currents. For the design wave periods of 8~10 sec, the design wave height of 3 m in NNW direction was increased by up to 40% when the incident waves encounter the opposing currents of 1.4 m/s while the wave height was reduced by 26% due to the following currents of 1.1 m at the bay mouth. This result indicates that the effect of wave-current interaction must be included to determine the design wave height if there exists a strong current.

Variability of Seawater Temperature in the Coastal Waters off the Dangjin Power Plant, Asan Bay, Korea (서해 아산만 당진화력발전소 인근해역 수온 변동 특성)

  • Ro, Young-Jae;Jun, Ho-Kyoung;Choi, Yang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2002
  • This study focused on variability of the sea water temperatures observed off the Dangjin Power Plant in the central west coast of Korea for the period of 1998-1999. Spatial averaged temperature shows the annual range of $20.3^{\circ}C$, with minimum of $3.3^{\circ}C$ in February and maximum of $23.6^{\circ}C$ in August. Horizontal distribution patterns are seasonally reversing: The temperatures are increasing toward inshore of the period of April to October, while they are increasing toward of offshore for the rest of year. Spectral analyses of temperature records show significant peaks at M2 and S2 tidal periods, since the water movement in the study area is influenced by strong tide. The responses of temperature variations to tidal phase show different seasonal characteristics: The temperatures are increasing at flood phases in winter and ebb phases in summer. Amplitudes of the components at M2 and S2 periods are $0.8^{\circ}C\;and\;0.5^{\circ}C$, accounting for 70-80% of daily variation. Coherency analyses between non-tidal components of temperature and wind speed show that in summer, northerly wind components significantly coherent with temperature at 2.8 days period, while in winter, southerly wind component is coherent with 2.4 days period, with 0.6 and 0.7 day phase-lags, respectively.

Spatial Distribution and Time Variation of M2 Tide and M4 Tide in the Western Coast of Korea (서해 연안해역에서 M2 분조와 M4 분조의 분포 및 변화)

  • Jung, Tae Sung;Jeong, Jin Kwang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.255-265
    • /
    • 2013
  • In the coastal region of Korea, historical tide harmonic constants were collected. Long-term tides and short-term tides observed by the KHOA were analyzed by a tide harmonic analysis method. Based on the harmonic constants, tidal characteristics such as tide asymmetry in Korean coastal waters were investigated. The harmonic constants obtained from the long-term tide data in the western coast have been used to show the relation between tide variation and reclamation project. $M_2$ amplitudes in the western coast have been decreased and $M_2$ phases were faster. $M_4$ amplitudes also were reduced and $M_4$ phases were faster in overall. In Mokpo and Kunsan tidal nonlinearity is relatively conspicuous. Overall, non-linearity of tidal currents is higher in the tidal channels flowing fast. The tidal non-linearity has increased by the development projects including large reclamation. The flood dominant characteristic in the northern and central part of Korean western coastal waters and the ebb dominant characteristic in the southern part have been intensified. The construction of Saemangeum sea dike has significantly changed the tidal characteristic in Korean western coastal waters.

A Study on the Tidal Energy Yield Capability according to the Yaw Angle in Jangjuk Strait (장죽수도에서의 요각변화에 따른 조류에너지 생산량에 관한 연구)

  • Tran, Bao Ngoc;Choi, Min Seon;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.982-990
    • /
    • 2019
  • The interest of researchers and governments in exploiting tidal energy resources is increasing. Jangjuk strait is a place with high tidal energy density potential and is therefore appropriate for the constructing of a tidal turbine farm. In this study, a numerical approach is presented to evaluate the current flow and power potential in Jangjuk strait with an ADCIRC model. Then, the tidal field characteristics are utilized as input parameters for tidal resource calculation with an in-house program. The 1 MW scale tidal energy converter devices are employed and arranged in 4 layouts to investigate the annual energy yield as well as flow deficit due to the wake ef ect at the surveyed area. The best-performed array generates an annual energy yield up to 12.96 GWh/year (without considering the wake effect); this value is reduced by 0.16 GWh/year when accounting for the energy loss caused by the flow deficit. Moreover, by altering the turbine yaw angle during the flood and ebb tides, the impacts of this factor on the energy extraction are analyzed. This indicates that the turbine array attains the maximum tidal power when the turbine yaw angle is at 346° and 164° (clockwise, to the North) for the spring and neap tide in turns.

Estimation of Tidal Residual Flow and Its Variability in Kyunggi Bay of Korea (경기만 조석 잔차류 산정 및 변동성)

  • Kim, Chang-S.;Lim, H.S.;Kim, Jin-Ah;Kim, Seon-Jeong;Park, K.S.;Jung, K.T.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.353-360
    • /
    • 2010
  • The Kyunggi Bay in mid-west of Korea is a relatively large estuarine system that connects the Han River system with Yellow Sea. Due to macro-tidal range of more than 8 m, the urban estuary shows deep tidal channels and wide tidal flats. Since last 30 years, the coastal development is undergoing, yielding noticeable change in environment. Particularly the tidal flat dynamics are generally accepted as being related with tidal residual flows in this area (Kim et al., 2009). We have estimated the annual variation and vertical structure of residual currents with one-year long observed flows in two major tidal channels of Kyunggi Bay. The moving average method and tidal current harmonic analysis yield nearly the same results on residual flow. The residual flow in Jangbong channel ranges from 20 cm/s in summer to 30 cm/s in winter. It is noticeable that the residual flow in Jangbong channel is flood dominant throughout the year, while the flow in Seokmo channel is ebb-dominant residual flow with current speed range of 20-40 cm/s. Due to the baroclinic response of relatively shallow estuary, significant reduction of energy in bottom layers have been observed, indicating the importance of residual circulation to the tidal flat behavior.

Characteristics of Surface Sedment and Seasonal Variation of Suspended Sediment in the Masan Bay, South Coast of Korea (한국 남해 마산만의 표층퇴적물 특성과 부유퇴적물의 계절별 변화 양상)

  • Choi, Jae Ung;Woo, Han Jun;Choi, Dong Lim;Lee, Tae Hee
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.67-77
    • /
    • 2006
  • Sedimentological investigations on surface and suspended sediments were performed in Masan Bay of the South Sea in order to reveal recent changes in depositional environments concerning anthropogenic influence. Surface sediments had been classified as 3 sediment facies: mud, slightly gravelly mud, and gravelly mud. In general, mud facies with more than 60% of silt is predominant and slightly gravelly mud facies occurs at the watercourse of bay's central area. The silt-dominant mud faices appears to be predominant before and after dredging. Temperature and salinity changes during one tidal cycle for each season suggest that water columns were stratified without vertical mixing regardless of the season due to weak intensity of tide from the effect of geographical features. The effect of freshwater discharge from the land seems to be insignificant. The strongest current was observed during ebb tide in spring and autumn while observed during flood tide in summer and winter. Net sediment flux (fs) and net suspended sediment transport (Qs) for suspended sediment were determined by remaining drift developed here. Net suspended sediment transport loads were seaward with $62.02{\times}10^3kgm^{-1}$, $31.84{\times}10^3kgm^{-1}$ in spring and fall, respectively, and landward with $18.23{\times}10^3kgm^{-1}$, $3.22{\times}10^3kgm^{-1}$ in summer and winter, respectively.

  • PDF

Acoustic Doppler Current Profiler Bottom Tracking Survey of Flow Structures around Geumo Archipelago in the Southern Waters of Korea (ADCP bottom tracking에 의한 금오열도 주변의 해수유동)

  • Choo, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.589-600
    • /
    • 2019
  • In order to investigate the flow structures around Geumo archipelago on Southern Waters of Korea, water movements were measured for 25 hours during spring tide in May and neap tide in September 2002 using ADCP (Acoustic Doppler Current Profiler) attached to a running boat. Dominant directions of ebb and flood current at spring tide are SE-NW, representing the average flow rate of approximately 40cm/s in the surface layer. However because of the topographical reason, the direction and speed of the flow in the narrow waterway sea area around the northwest of Gae Island were different. There was no notable baroclinic component of tidal flow at spring tide. This indicates that the sea area has been actively engaged in vertical mixing due to island wake or eddy due to narrow waterways, shallow water depth and rapid flow rate around archipelago. At neap tide, dominant directions of tidal flows are SSE-NNW and the average flow rate in the surface layer is about 85 percent of the spring tide. The duration and intensity of the flow direction are shorter and less dominant than the spring tide. It is expected that asymmetrical tidal mixing will occur due to vertical velocity shear and horizontal eddies. From daily mean tidal flows obtained from the ADCP observation, it was found that the northwest of Gae Island have flows in NW~NE, the west of Geumo Island have the average currents of up to 21 cm/s WSW~SSW and counterclockwise circulation or eddy currents are formed in the west of Sori Island.