Design Wave Transformation in Finite Depth due to Wave-Current Interaction

파랑-해류 상호작용에 의한 천해 설계파랑 변형

  • Published : 2009.08.31

Abstract

Wave-current interaction due to strong ambient currents causes to alter wave properties such as wave height, wave profile and wave spectrum. In this study we first examined the SWAN model's applicability by comparing with an analytical solution of Suh et al. (1994) for wave-current interaction in finite water-depth. Numerical experiments using SWAN model have been conducted for Garolim Bay to estimate the design waveheights influenced by strong tidal currents. For the design wave periods of 8~10 sec, the design wave height of 3 m in NNW direction was increased by up to 40% when the incident waves encounter the opposing currents of 1.4 m/s while the wave height was reduced by 26% due to the following currents of 1.1 m at the bay mouth. This result indicates that the effect of wave-current interaction must be included to determine the design wave height if there exists a strong current.

파랑이 흐름이 강한 해역으로 전파되면 파랑-흐름 상호작용에 의해 파고, 파형, 스펙트럼 등 파랑특성의 변형에 영향을 미친다. 본 연구에서는 가로림만해역을 대상으로 조류의 강한흐름과 조차로 인한 수심 변화가큰 경우 입사 파랑의 천해파랑 변형을 SWAN 모형으로 수치모의 실험하였다. SWAN모형의 실 해역 적용에 앞서 강한 흐름에 의한 천해 파랑스펙트럼 변형에 대한 이론적 해석해(Suh et al. 1994)와 모의결과를 비교, 검증한 결과 잘 일치하였다. 가로림만 외해역의 설계파랑인 NNW방향의 주기 8초와 10초, 입사파고 3 m에 대한 모의실험 결과에 의하면 만 입구지점에서 최대 1.4 m/s의 낙조류와 파랑이 상호 역방향으로 만나 파고가 약 40%까지 증가되었고, 이와 반대로 최대 1.1 m/s의 순방향인 창조류의 경우에는 26%정도 감소하였다. 본 실험결과에 의하면 가로림 만입구의 협 수로에서는 항시 강한 조류의 흐름이 있기 때문에 설계파 산정에 있어 파랑-해류의 상호작용에 의한 파랑변형이 가장 중요한 결정요소인 것으로 판단된다.

Keywords

References

  1. 이창훈 (1998). 해류의 영향을 받는 해역에서 시간의존 파랑식의 내부조파. 대한토목학회논문집, 18(2), 195-203
  2. 한국서부발전(주) (2007). 가로림 조력 타당성조사(2단계) 최종보고서. 802p
  3. 한국해양연구원 (2005). 전해역 심해설계파 추정보고서(II). BSPE95100-1767-2, 450p
  4. Booij, N. (1981). Gravity waves on water with non-uniform depth and current. Report No. 81-1, Dept. of Civil Eng., Delft Univ. of Technology
  5. Booij, N., Holthuijsen, L.H. and Ris, R.C. (1996). The SWAN model for shallow water. Proc. 25th Int. Conf. Coastal Engng., Orlando, 668-676
  6. Chen, Q., Madsen, P.A., Schaffer, H.A., and Basco, D.R. (1998). Wave-current interaction based on an enhanced Boussinesq approach. Coastal Engineering, 33, 11-39 https://doi.org/10.1016/S0378-3839(97)00034-3
  7. Eckart, C. (1951). Surface waves on water of variable depth. Rep. No. SIO51-12, Scripps Inst. of Oceanography, La Jolla, Calif
  8. Hedges, T.S., Anastasiou, K. and Gabriel, D. (1985). Interaction of random waves and currents. J. Wtrwy., Port, Coast. And Oc. Engrg., 111(2), 275-288 https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(275)
  9. Kirby, J.T. (1984). A note on linear surface wave-current interaction over slowly varying topography. J. Geophy. Res., 89(C1), 745-747 https://doi.org/10.1029/JC089iC01p00745
  10. Li, Y.C. (1999). Wave-current interaction. Handbook of Coastal and Ocean Engineering, Edited by J.B. Herbich, McGraw-Hill, 703-726
  11. Longuet-Higgins, M.S. and Stewart, R.W. (1961). The changes of amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mechanics, 10(4), 529-549 https://doi.org/10.1017/S0022112061000342
  12. Perigrine, D.H. (1976). Interaction of Water Waves and Currents. Advances in Applied Mathematics, 16, Academic, New York, 9-17
  13. Smith, J.M. (1997). One-dimensional wave-current interaction. Coastal Engineering Technical Note, U.S. Army Engineer Waterways Experiment Station
  14. Smith, J.M. (1999). Wave breaking on an opposing current. Coastal Engineering Technical Note, IV-17, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. 9
  15. Sorensen, R.M. (2006). Basic coastal engineering, Springer, New York, 321
  16. Suh, K.D., Kim, Y.-Y. and Lee, D.Y. (1994). Equilibrium-range spectrum of waves propagating on currents. J. Waterway, Port Coastal and Ocean Eng., 120(5), 434-450 https://doi.org/10.1061/(ASCE)0733-950X(1994)120:5(434)
  17. SWAN. (2006). SWAN user manual. Delft University of Technology
  18. Yoon, S.B. and Liu, P.L.F. (1989). Interaction of currents and weakly nonlinear water waves in shallow water. J. Fluid Mech., 205, 397-419 https://doi.org/10.1017/S0022112089002089