최근의 연구에서 Li. Brenner, Cornelissen과 Kim (2002)은 추적 눈 운동 동안의 2차원 모양지각이 망막에 형성된 이미지 내용을 그대로 반영한다는 것을 보여 주었는데, 이러한 연구는 2차원 모양판단에 있어서 눈 운동 정보가 전혀 고려되지 않았음을 시사한다. 이와 같은 실험실 연구와 달리, 실제 생활에서 2차원 모양지각의 왜곡은 대부분의 경우에 발생하지 않는데, 가능한 한 가지 이유는 실험실 연구에서 사용된 자극의 경우에 참조대상이 존재하지 않는데 비하여, 실제 생활에서는 다양한 참조대상이 목표대상의 주변에 존재하기 때문이다. 목표대상과 참조대상의 상대적인 위치관계는 추적 눈 운동 동안에 망막에서도 그대로 유지되는데 시각체계가 이러한 안정적인 관계를 목표 대상의 모양을 지각할 때에 이용할 가능성이 있다. 본 연구에서는 다양한 참조대상을 이용하여 이러한 가능성을 검증하였다. 특히, 피험자의 눈 운동을 눈 운동 측정기를 이용하여 측정하였으며, 적절한 눈 운동을 수행한 시행에서의 데이터만 분석에 사용하였다.
LRU는 비균등 참조 패턴을 보이는 데이타베이스의 캐쉬 교체 정책으로 적합하지 않음에도 불구하고, 적절한 대안 부재로 인해 대부분의 데이타베이스 시스템에서 캐쉬 교체 정책으로 이용되어 왔다. 본 논문은 실제 데이타베이스 트레이스 분석을 통해 데이타베이스의 블록 참조 패턴을 추출하고, 이를 바탕으로 새로운 캐쉬 교체 정책을 제안한다. 데이타베이스의 트레이스 분석 결과, 전체 시간동안 거의 참조되지 않는 블록이 전체의 70% 가량을 차지하였다. 그리고 블록의 재참조 가능성에 미치는 최근도(recency)의 영향력이 시간적 지역성으로 인해 처음엔 강력하지만, LRU 스택거리가 증가함에 따라 급격히 감소하여, 결국엔 사라지는 현상을 관찰하였다. 이 관찰을 토대로, 본 논문은 전체 블록을 재참조 가능성과 재참조 가능성에 대한 최근도의 영향력을 기준으로 4개의 그룹으로 분류하고, 각 그룹의 참조 특징에 적합한 우선순위 평가 방법을 운용하는 RCB(Reference Characteristic Based) 캐쉬 교체 정책을 제안한다. RCB 정책은 재참조 가능성이 극히 낮은 블록은 다른 블록보다 캐쉬에서 빨리 교체하며, 오랜 시간 참조되지 않은 블록에 대해서는 참조빈도에 의거하여 블록의 우선순위를 결정한다. 실제 데이터베이스 워크로드를 통한 모의실험 수행 결과, RCB 정책은 기존의 다른 교체 정책들(LRU, 2Q, LRU-K, LRFU)보다 우수한 성능을 나타냈으며, 특히 LRU에 비해서는 약 5 ~ 12.7% 정도, 캐쉬적중실패 회수를 줄였다. RCB 정책의 시간복잡도는 O(l)로서 LRU, 2Q 등과 동일하며, 캐쉬 크기를 N이라 할 때 시간복잡도가 $O(log_2N)$인 LFU와 LRU-K, 그리고 O(1)부터 $O(log_2N)$ 사이의 값을 갖는 LRFU보다 우수하다.
최근의 연구에서 Li, Brenner, Cornelissen과 Kim (2002)은 추적 눈 운동 동안의 2차원 모양지각이 망막에 형성된 이미지 내용을 그대로 반영한다는 것을 보여 주었는데, 이러한 연구는 2차원 모양판단에 있어서 망막 외 정보가 전혀 고려되지 않았음을 시사한다. 이와 같은 실험실 연구와 달리, 실제 생활에서 2차원 모양지각의 왜곡은 대부분의 경우에 발생하지 않는데, 가능한 한 가지 이유는 실험실 연구에서 사용된 자극의 경우에 참조대상이 존재하지 않는데 비하여, 실제 생환에서는 다양한 참조대상이 목표대상의 주변에 존재하기 때문이다. 목표대상과 참조대상의 상대적인 위치관계는 추적 눈 운동 동안에 망막에서도 그대로 유지되는데 시각체계가 이러한 안정적인 관계를 목표대상의 모양을 지각할 때에 이용할 가능성이 있다. 본 연구에서는 다양한 참조대상을 이용하여 이러한 가능성을 검증하였다. 흥미롭게도, 추적 눈 운동 동안에 참조대상이 목표대상 주위에 존재할 때에도 모양지각 왜곡이 관찰되었는데, 왜곡의 양은 참조대상이 존재하지 않을 때에 비하여 감소하였다. 참조대상의 효과는 참조대상과 목표대상의 거리에 비례하였다. 이러한 실험결과는 추적 눈 운동 동안의 2차원 모양지각에 참조대상 정보가 이용되지만, 참조대상에 대한 정보만으로는 실제생활에서의 안정적인 모양지각을 설명할 수 없음을 시사한다.
본 논문에서는 소프트웨어 구동 시 발생 가능한 메모리 오류 중 발생 빈도가 매우 낮은 일부 메모리 오류에 대해 실행 파일을 역어셈블하여 만들어진 어셈블리어의 구문을 분석하여 메모리 오류 가능성을 검출하는 방법을 제안한다. 몇 개의 프로그램을 대상으로 선정하고, 제안한 방법을 이용하여 메모리 오류 가능성을 검출한 결과, 약 만 개의 함수, 백만 라인의 어셈블리어 명령어에서 750여 개의 메모리 오류 가능성을 검출하였고, 검출에 걸린 시간은 총 90초 정도가 소요되었다.
대명사의 종류에 따른 대명사의 어휘적 특성이 대용어 참조해결에 미치는 효과를 살펴보기 위해서 두개의 실험을 수행하였다. 실험 1에서는 대명사 문장의 읽기시간과 선행어에 대한 어휘판단과제를 통해서 복수가 단수에 비해 읽기시간은 빠르지만, 어휘판단시간은 단수가 빠른 경향을 보였다. 그리고 단수는 애매성에 따라 반응시간의 차이를 보였다. 실험 2에서는 단수가 복수에 비해 어휘판단이 빠름을 반복하였다. 그리고 단수는 여전히 성별단서의 애매성에 대한 차이를 보였다. 이러한 결과는 대용어의 참조해결에 미치는 여러 요인 중에서 대명사의 어휘적 특성이 한 요인임을 증명하였다. 결론적으로 대명사의 종류에 따라 참조해결과정이 다르게 일어 날 가능성과 표상되는 글 모형도 달라질 수 있는 가능성을 제시하였다.
디지털 포렌식에서 증거 데이터 분석의 효율성을 높이기 위해서는 잘 알려진 파일을 분석 대상에서 제외하거나, 특정 파일의 존재여부에 대한 검사가 필요하다. 이를 위하여, 시스템 파일, 폰트 파일, 응용 프로그램 파일 등 분석이 필요없는 파일 및 루트킷, 백도어, 익스플로잇 코드 등 악성 파일에 대한 해쉬 값을 미래 계산하여 저장해 둔 것을 소프트웨어 참조 데이터세트라고 한다. 이 논문에서는 소프트웨어 참조 데이터세트 구축에 대한 주요 동향에 대하여 살펴본다. 특히, 소프트웨어 참조 데이터세트 구축을 주도하고 있는 미국의 NSRL RDS에 대하여 활용가능성 측면에서 구체적으로 살펴본다. NSRL RDS에 대한 분석결과 실제 컴퓨터 포렌식 도구에서 활용하기 매우 어렵다는 사실을 알 수 있다.
적절한 벤치마킹 대상의 선정은 조직 계획 및 통제에 있어 중요한 요소로 인식되고 있으며, 이에 대한 많은 연구가 이루어져 왔다. 특히, 조직의 상대적 성과 평가와 이를 바탕으로 벤치마킹 대상을 결정하는 DEA(data envelopment analysis)의 출현은 벤치마킹에 대한 연구를 증대시켜왔다. 하지만, 벤치마킹 대상 선정은 기술적 생산 가능성 측면 외에도 조직의 정책적 고려, 관리적 우위 그리고 외부 제약 등을 고려해야 한다. 따라서 수리적 결과에 바탕을 둔 기술적 생산 가능성만을 가지고 벤치마킹 대상을 제공하는 현재의 DEA 접근 방법에는 한계가 있다. 즉, 고려하는 모든 대상을 기반으로 한 global efficiency 관점에서 제공하는 해가 비 효율적 조직 입장에서는 바람직하지 않을 수도 있다. 이에 따라 본 연구에서는 local efficiency 개념을 도입하여, 다양한 관점에서 벤치마킹 대안들을 살펴 볼 수 있는 방법을 제공하고자 한다. 이는 다음과 같은 과정에 의해 수행된다. 먼저, DEA를 이용하여 비교하고자 하는 모든 DMU(decision making unit)의 투입/산출물을 바탕으로 각 DMU의 효율성 값과 비효율적 DMU의 참조집합 (reference set)을 도출한다. 다음으로, 도출된 참조집합이 조직 운영 관점에서 적절한 벤치마킹 대상이며, 이러한 목표를 달성할 수 있는가를 평가한다. 이때 도출된 벤치마킹 대상이 적절하다면 분석과정을 종료하고, 적절하지 않을 경우 다음과 같은 추가적인 분석을 수행한다. 우선, 각 참조 집합을 중심으로 DMU를 그룹핑하고, 각 그룹별로 효율성 값 및 참조집합을 도출한다. 이때 도출된 효율성 값이 local efficiency 값에 해당된다. 다음으로, 참조 집합 그룹을 중심으로 도출된 비효율적 DMU의 참조집합이 적절한 벤치마킹 대상인가를 판단한다. 적절한 벤치마킹 대상을 도출하였으면 분석을 종료하고, 그렇지 않을 경우 적절한 벤치마킹 대상을 도출할 때까지 추가적인 분석과정을 반복한다. 제안한 방법을 통하여 조직은 기술적 생산 가능성 외에도 다양한 조직 운영 관점에서 적절한 벤치마킹 대상을 선정할 수 있으며, 이에 따른 목표를 수립할 수 있을 것으로 기대한다. 또한 더 나아가 global efficiency 관점에서 효율적 조직이 되기 위하여 단계적인 벤치마킹 대상 선정과 이에 따른 목표를 수립하는데도 유용하리라 판단된다.
상호참조해결은 주어진 문서에서 멘션을 추출하고 동일한 개체의 멘션들을 군집화하는 작업이다. 기존 상호참조해결 연구의 멘션탐지 단계에서 진행한 가지치기는 모델이 계산한 점수를 바탕으로 순위화하여 정해진 비율의 멘션만을 상호참조해결에 사용하기 때문에 잘못 예측된 멘션을 입력하거나 정답 멘션을 제거할 가능성이 높다. 또한 멘션 탐지와 상호참조해결을 종단간 모델로 진행하여 학습 시간이 오래 걸리고 모델 복잡도가 높은 문제가 존재한다. 따라서 본 논문에서는 상호참조해결을 2단계 파이프라인 모델로 진행한다. 첫번째 멘션 탐지 단계에서 후보 단어 범위의 점수를 계산하여 멘션을 예측한다. 두번째 상호참조해결 단계에서는 멘션 탐지 단계에서 예측된 멘션을 그대로 이용해서 서로 상호참조 관계인 멘션 쌍을 예측한다. 실험 결과, 2단계 학습 방법을 통해 학습 시간을 단축하고 모델 복잡도를 축소하면서 종단간 모델과 유사한 성능을 유지하였다. 상호참조해결은 Light에서 68.27%, AMI에서 48.87%, Persuasion에서 69.06%, Switchboard에서 60.99%의 성능을 보였다.
본 논문은 시간 지역성과 인기 편향성을 가진 데이터 참조를 나타낼 수 있는 새로운 참조 모델을 제안한다. 기존의 참조 모델 중 대표적인 LRU 스택 모델은 시간 지역성, 즉 최근에 참조된 데이터가 다시 참조될 가능성이 높은 성질을 나타낼 수 있으나, 데이터의 서로 다른 인기도를 고려할 수 없는 약점이 있다. 이와 반대로 데이터의 서로 다른 인기도를 반영할 수 있는 모델로 독립 참조 모델이 있으나, 시간에 따른 데이터 참조 성향의 변화를 모델링할 수 없는 한계가 있다. 본 논문이 제시하는 참조 모델은 이 두 모델의 한계를 극복하여 서로 다른 데이터의 인기도와 시간에 따른 참조 성향의 변화를 모두 반영할 수 있는 특징이 있다. 또한, 본 논문에서는 캐쉬 교체 알고리즘과 참조 모델의 연관성에 대해 살펴보고 제안한 모델의 최적성에 대해 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.