• Title/Summary/Keyword: 착지충격

Search Result 29, Processing Time 0.022 seconds

Evaluation of Landing Impact Characteristics of Sport Shoes in Running by finite Element Analysis (유한요소 해석을 통한 스포츠화의 런닝 시 착지충격 특성평가)

  • Kim, Sung-Ho;Cho, Jin-Rae;Lee, Shi-Bok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2009
  • Recently, intensive research efforts are world-widely forced on the development of sport shoes improving both the injury protection and the playing performance by taking kinesiology and biomechanics into consideration. However, the success of this goal depends definitely on the reliable evaluation of the dynamic responses of sport shoes and human foot, particularly the landing impact characteristics. It is because the landing impact force is a main source of unexpected injuries and influences the playing performance in court sport activities. This paper addresses the application of finite element method to the evaluation of landing impact characteristics of barefoot and several representative court sport shoes in running. In order to accurately reflect the coupling effect between human foot and shoes accurately, we construct a fully coupled three-diemensional foot-shoe FEM model which does not rely on the independent experimental data any more. Through the numerical simulation, we assessed the reliability of the numerical FEM model by comparing with the experimental results and investigated the landing impact characteristics, such as GRF, MIF, acceleration and frequency responses, of representative court sport shoes.

Finite Element Analysis of Impact Characteristics of Shoes-Leg Coupled Model to landing Mode (착지모드에 따른 신발-족 연계모델의 충격특성 유한요소 해석)

  • Ryu Sung-Heon;Kim Sung-Ho;Cho Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1191-1198
    • /
    • 2005
  • This paper is concerned with the numerical investigation of the landing impact characteristics of sport shoes to the landing mode. In most court sport activities, jumping and landing are fundamental motions, and the landing motion is largely composed of forefoot and rearfoot landing modes. Since the landing impact may, but frequently, lead to unexpected injuries of players, the investigation of its characteristics and the sport shoes design for reducing it are of a great importance. To investigate the landing impact characteristics to the landing mode, we construct a shoes-leg coupled model and carry out the numerical simulation by an explicit finite element method.

Finite Element Analysis for the Landing Impact Evaluation of Court Sport Shoes (코트 스포츠화의 착지충격 평가를 위한 유한요소 해석)

  • Kim, Seong-Ho;Cho, Jin-Rae;Ryu, Sung-Heon;Choi, Joo-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.438-443
    • /
    • 2004
  • Court sport shoes is consisted of several functional parts such as soles, upper and midfoot reinforcements. Currently, intensive research for court sport shoes considering functional parts is in progress world widely, but the shoes design relies only on the view point of kinesilogy and biomechanics until now. Thus, more scientific and reliable evaluation of shoes characteristics is definitely required. In this paper, we evaluate the landing impact of court sport shoes by using finite element method. We construct a shoes-leg coupled FEM model which can simulate effectively impact in running mode. From the numerical analysis results, the designer can establish the advanced design concepts and build up the detailed design standard for the specific court sport shoes under consideration.

  • PDF

Gender Differences of Knee Angle in Landing From a Drop-Jump: A Kinematic Analysis (수직착지시 성에 따른 슬관절의 형상학적(kinematic) 자료 분석)

  • Yi, Chung-Hwi;Park, So-Yeon;Lee, Sang-Heon
    • Physical Therapy Korea
    • /
    • v.9 no.4
    • /
    • pp.45-52
    • /
    • 2002
  • 이 연구의 목적은 수직착지시 성에 따른 슬관절 가동범위의 차이를 알아보는 것이다. 연구 대상자는 20대의 건강한 성인 48명(남자 25명, 여자 23명)이었다. 연구 대상자에게 40 cm 높이에서 한발로 뛰어내리도록 하고, 2차원 동작측정 기구인 CMS-HS를 이용하여 수직착지시 슬관절의 굴곡각도, 최대 슬관절 굴곡각도, 슬관절의 가동 범위, 각속도를 측정한 후, 남 여 두 집단간의 차이를 알아보았다. 이때 사용한 분석방법은 독립적인 두 표본 t-검정이었으며 축차적(stepwise) 다변량회귀분석을 이용하여 체중과 신장을 조절한 상태에서 남여 간에 차이가 있는지를 분석하였다. 그 결과 수직착지시 슬관절의 굴곡각도에서는 유의한 차이를 보이지 않았으나, 최대 슬관절 굴곡각도, 슬관절의 가동 범위, 각속도에는 유의한 차이가 있었다(p<.05). 체중과 신장이 조절된 조건 하에서 여자는 수직착지시 최대 슬관절의 굴곡각도와 슬관절의 가동범위가 남자보다 작았다. 이러한 결과를 통하여 수직착지시 여자가 남자보다 슬관절 손상의 빈도가 높은 이유 중의 하나는 여자가 슬관절을 덜 굴곡시킴으로 인해 바닥의 충격을 더 많이 받기 때문이라는 가능성을 발견하였다.

  • PDF

Mechanical Analysis of the Force on Landing 3 Type Curves(Ellipse, Circle, Brachistochrone) of Halfpipe (스노우보드 하프파이프 점프시 착지 충격에 관한 3가지 곡선(타원, 원, 브라키스토크론)의 역학적 해석)

  • Lee, Un-Hak;Kim, Kew-Wan;Park, In-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.1-19
    • /
    • 2008
  • This research is to analyze the force on landing 3 Type of Halfpipe Curves(Ellipse, Circle, Brachistochrone) based on the mechanical calculation of normal force on a sloping surface. Jumping off a platform on a bard horizontal surface, the flexing of the legs, the softness of the snow, the angle of the landing surface, initial velocity and the forward motion of the snowboarder can contribute to reducing the force on landing. But halfpipe is significantly determined by the curvature of surface. It is definitely verified that the Brachistochrone curve is more safety than others. However currently using the Ellipse curve is mostly safe too. If we consider the efficiency of construction, we can easily think there is no use of another curves except normal ellipse curved halfpipe. It would better that geometrically verity curved halfpipe should be designed for improving fluent skills to snowboarders. This methode of research can be a model of scientifical research on sports safety how can sportsman reduce critical injury by designing optimal halfpipe facilities and manual.

Effect of Different Drop Heights and Load on Lower Extremity Kinetics in Landing Task (착지 과제에서 낙하높이와 중량이 하지역학에 미치는 영향)

  • Hyun, Seunghyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.115-121
    • /
    • 2021
  • Human's landing strategies have been explained through lower extremity kinetics in various conditions. However, how lower extremity kinetics respond when the two conditions between a load and landing height are combined is not yet understood. To achieve the purpose of this study, a total of 20 men and women were subjected to drop landing according to a load(No load, 10%, 20%, 30% of the body weight) at various landing heights(0.3 m, 0.4 m, 0.5 m). As a result of the study, the main effect of a load was not statistically significant in all variables. But increasing of the landing heights showed more flexion angle which was statistically significant in knee joint. In addition, as the landing height increased, the medial-lateral, anterior-posterior, vertical force, and loading rate increased, while time to peak vertical force decreased which was statistically significant. Thus, humans can successfully perform the landing motion even if the load is changed at various heights. However, it reacted more sensitively to the change in landing height than that load condition. The landing height can be prepared for recognition and shock absorption through visual information, but the weight level is difficult for the body to perceive and explains why it is more difficult to apply it to the landing strategy mechanism for shock absorption.

The Effects of Sports Injury Prevention Training Program on the Ground Reaction Force during the Rebound in Female Highschool Basketball Players (스포츠상해 예방훈련이 여자고등학교 농구선수들의 리바운드 점프 후 착지 시 지면반력에 미치는 영향)

  • Lim, Bee-Oh;Chung, Chul-Soo;Shin, In-Sik;Kim, Suk-Bum;Nam, Ki-Jung;Lee, Sang-Woo;Park, Yong-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • The purpose of this study was to investigate the effects of anterior cruciate ligament (ACL) injury prevention program on the ground reaction force during the rebound in female highschool basketball players. Sixteen highschool female basketball players (ages 16 to 18 years) were participated in this study. Eight of these players participated in a 8-week ACL injury prevention program. Before and After ACL injury prevention program, initial peak value(%BW), maximum peak value(%BW), impulse(%BW sec), and loading rate(N/sec) were measured in the players. The experiment group after ACL injury prevention program showed significant decreased initial peak value, impulse, and loading rate.

Numerical Analysis of Impact Force Transfer Characteristics of Court Sport Shoes to Surface Condition (지면조건에 따른 코트 스포츠화 착지 충격력의 전달특성 수치해석)

  • 류성헌;최주형;김성호;부진후;조진래
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1974-1981
    • /
    • 2004
  • This paper is concerned with the numerical investigation of the transfer characteristics of the landing impact force exerted on court sport shoes to the sport surface condition. The reaction force occurred by the impact between court sport shoes and sport surface is absorbed by shoes to some extent, but the remaining impact force is to transfer the human body from the sole of a foot. We consider four surface conditions, asphalt, urethane, clay and wood court surfaces. For the dynamic response analysis, we construct a coupled leg-shoes FEM model and create the multi-layered composite surface model. The numerical simulations are performed by an explicit nonlinear finite element method. Through the numerical experiments, we examine the transfer characteristics of the landing impact force to the surface condition.

Analysis of Impulse Force and Kinematic Variable to the University Male's Triple Jumpers (남자 대학 세단뛰기 선수들의 충격력과 운동학적 변인 분석)

  • Ryu, Jae-Kyun;Yeo, Hong-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.209-216
    • /
    • 2008
  • The purposes of this study were to describe the techniques used by the university male's triple jumpers and to examine the characteristics of the kinematic and the kinetic factors of the three phases of a triple jump. The subjects were the five finalists with 16.70m over in the triple jump at the 2003 World Student Games. After analyzing the kinematic and the kinetic data during the whole triple jump, the following findings are obtained. The heights of the center of gravity of takeoff and touchdown for the three phases of the triple jump were medium-law-high pattern and the same height pattern as hop and step, respectively. Mean values for the average forces exerted on the subjects ranged from 0.6 to 0.7 times body weight to the horizontal direction and about 2.8 to 3.0 times body weight to the vertical direction.

Effects of Wearing Spandex Pants on Impact Forces and Muscle Activities during Drop Landing (드롭 착지 동작 시 탄성 섬유 바지 착용이 충격력과 근육 활동에 미치는 영향)

  • Chae, Woen-Sik;Kang, Nyeon-Ju
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.603-610
    • /
    • 2009
  • The purpose of this study was to determine how spandex pants affect impact force and muscle activities in the lower extremity. Seven pairs of surface electrodes were attached to the right-hand side of the body. Paired t-test was performed to test if significant difference exist between two conditions(p< .05). The average IEMG activities in the TA, BF, and GM during the landing phase reduced significantly with spandex pants compared to regular pants. All peak IEMG activities except the RF in wearing spandex pants group were significantly greater than the corresponding values in wearing regular pants one. The greater muscle activity recorded in wearing spandex pants can be attributed to the greater motor unit recruitment needed to decelerate and stabilized their bodies. Impact force and loading rate were not significantly decreased with wearing spandex pants. Since the spandex pants used in this study were not custom-fit based on girth of each participants thigh and shank, compression and elasticity for the pants could not be optimized.