• 제목/요약/키워드: 착빙방지

검색결과 4건 처리시간 0.019초

빙해선박 상부갑판 열선의 열전달 특성에 따른 착빙방지 성능평가 및 설계기준에 관한연구 (A Study on the Anti-Icing Performance Evaluating and Design Guide by Heating Coil for Upper Deck of Icebreaking Vessels)

  • 이종찬;서영교;이춘주
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.541-549
    • /
    • 2012
  • The study adopted a freezing prevention method of the upper deck which used heating coil, and carried out numerical analysis by using ANSYS 13.0 CFD for design guide of the vessel operating in cold region. It is based on the experimental results of the anti-icing performance tests which were carried at cold room chamber in MOERI. Numerical analysis for the design guide was performed by considering S.S.T. (Shear Stress Transport) turbulent model for flow separation effects and the turbulence which occurred in interfaces of the numerical model in order to express appropriate heat transmission phenomenon. The numerical result shows average temperature of the upper deck surface appeared similarly compared with the indoor chamber test. The design guide for optimum freezing prevention presented through heat transmission capability and interval of the heat coil in various outdoor temperature($10^{\circ}C{\sim}-30^{\circ}C$) and wind speed(1m/s~7m/s).

항공기용 3종류 나노입자들로 함침된 폴리우레탄 탑코트의 접착성, 소수성 및 색재현성 특성평가 (Evaluation of Adhesion, Hydrophobicity and Color Gamut of Nanoparticle embedded Polyurethane Topcoat for Aircraft with 3 Different Nanoparticles)

  • 김종현;권동준;박종만
    • 접착 및 계면
    • /
    • 제22권1호
    • /
    • pp.16-21
    • /
    • 2021
  • 항공기 산업에서 착빙 제거 및 방지는 안전상 매우 중요한 기술이다. 착빙 제거에 대한 연구는 활발히 진행되어 실제 항공기에 적용한 상태이지만, 착빙을 사전에 방지 및 지연하는 기술은 아직 미비한 실정이다. 본 연구에서는 다른 종류의 나노입자를 코팅함으로써 폴리우레탄 탑코트의 표면거칠기 및 표면에너지를 조절하였다. 각 나노입자 종류에 따른 코팅면에 증류수를 이용한 정적접촉각을 측정하여 소수성을 평가하였고, 나노입자 코팅면의 안정도를 평가하기 위해 인발접착시험을 진행하였다. 또한, 나노입자의 종류에 따른 탑코트의 색재현성 평가를 위해 표면의 RGB 색을 비교하여 정량화를 진행하였다. 이를 통해 탑코트의 원색을 최대한 재현하면서 접착성을 가질 수 있는 최적의 소수성 표면을 얻을 수 있었다.

빙해선박 풍우밀문의 결빙방지 성능평가 및 설계기준에 관한 연구 (A Study on the Anti-lcing Performance Evaluation and Design Guide for Weather-Tight Door of the Vessels Operating in Cold Region)

  • 서영교;정영준
    • 대한조선학회논문집
    • /
    • 제50권6호
    • /
    • pp.450-457
    • /
    • 2013
  • For the design guide of a vessel operating in cold region, numerical analysis was carried out to evaluate the weather-tight door which installed the heating cables by using ANSYS 13.0 Transient Thermal. The numerical analysis was performed by considering Advection-Diffusion equation. This study based on the experimental results of 'A study on Anti-Icing Technique for Weather-Tight Door of Ice-Strengthened Vessels'(Jeong, et al., 2011a) in KIOST. For validation of the numerical analysis results, the cold chamber experimental data measured by the heat sensors in certain location of the weather-tight door was used. The external environmental temperature which varies from $5^{\circ}C$ to $-55^{\circ}C$ was considered in numerical analysis. Also three different heating cables which have the heat capacity of 33W/m, 45W/m and 66W/m were adapted for the design parameters to be the most efficient and guidelines for anti-icing design of the weather tight door.

내빙선박용 풍우밀 문의 결빙방지 기법 연구 (A Study on Anti-Icing Technique for Weather-Tight Door of Ice-Strengthened Vessels)

  • 정성엽;천은지;조성락;이춘주
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.575-580
    • /
    • 2011
  • Icing problem of ice-strengthened vessels is an important issue when operating in low temperature environment and it can cause damage to deck machineries and emergency equipments. Many ice-strengthened vessels have since been constructed and operated in accordance with the ice class rules such as Det Norske Veritas (DNV), Russian Maritime Register of Shipping (RS), American Bureau of Shipping (ABS) and so on. Therefore winterization is defined as the preparation of a ship for safe operation. In this research, anti-icing performance tests of weather-tight door have been carried out at various temperature conditions($5^{\circ}C$, $-10^{\circ}C$, $-20^{\circ}C$, $-30^{\circ}C$, $-40^{\circ}C$) in the low temperature cold room facility and then, ambient temperature, specimen temperature, electric current and temperature of heating cable were measured during the test operations. This research describes the construction guidelines of weather-tight door based on anti-icing test results to apply to the full-scale vessels.