• Title/Summary/Keyword: 차폐콘크리트

Search Result 115, Processing Time 0.02 seconds

Shielding Calculations of Accelerator Facility for Medical Isotope Production using MCNPX Code (MCNPX 코드를 이용한 의료용 방사성동위원소 생산을 위한 가속기 시설의 방사선차폐 및 선량 계산)

  • Seo Kyu-Seok;Kim Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.210-214
    • /
    • 2004
  • Since production of radioactive isotope for using PET, a lot of neutrons were produced. The produced neutrons were mainly shielded by concrete facility. Secondary photons are generated and emitted from the concrete shielding wall of the PET cyclotron since the proton-generated neutrons are thermalized and absorbed in the concrete wall and emit secondary radiations, i.e., photons. This study calculated neutron dose and photon dose at outside of the accelerator facility using MCNPX code. As results of the calculation, total dose were calculated less than limited dose by law.

  • PDF

Performance Evaluation of Admixture for Durability Improvement of Shielding Materials Used Waste Glass as Fine Aggregate (폐유리를 잔골재로 사용한 차폐채움재의 내구성 개선을 위한 혼화재료의 성능평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung;Song, Yong-Soon;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.20-27
    • /
    • 2019
  • Compared to the development and manufacturing technology of electronic goods, the development of waste glass recycling technology is relatively insufficient, leading to the acceleration of waste of resources and environmental pollution. Although waste glass recycling technology is being actively developed overseas, waste glass recycling technology is insufficient in Korea, leading to the illegal dumping or burial of waste glass. Waste glass has been confirmed to have pozzolan reaction potential when having hydration reaction with cement. Waste glass is also reported to be effective in reducing bleeding and inhibiting the development of hydration heat by improving the physical properties of concrete and the rheology properties of fresh concrete. Therefore, this paper analyzed the strength characteristics and the effect of alkalic-silica reaction on the expansion of shielding concrete that used waste glass as fine aggregate. Where, suitable admixture materials were used as a measure to suppress the expansion.

BUGLE93 라이브러리를 이용한 원자로 일차차폐에 대한 차폐해석

  • 박재원;강상호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.275-281
    • /
    • 1996
  • ENDF/B-VI 핵단면적자료를 기초로 생성된 BUGLE93$^{[1]}$ 라이브러리를 이용하여 울진 3.4호기 원자로 주변의 콘크리트 일차차폐벽에 대한 방사선차폐해석을 수행하였다. 중성자 및 감마선 수송계산은 일차원 각분할 해석코드인 ANISN-ORNL$^{[2]}$ 을 이용하였다. 또한, 기존의 영광 3.4호기 설계에 이용하였던 CASK$^{[3]}$ 라이브러리를 대체할 경우 예상되는 차폐효과의 변화를 평가하기 위하여 노심으로부터 일차차폐벽 사이의 모든 매질에 대한 중성자 및 감마선속을 계산하고. 계산결과를 비교.분석하여 제시하였다. 중성자선속에 대한 분석결과, BUGLE93을 이용한 계산결과는 원자로용기 내부에서는 CASK를 이용한 결과보다 적은, 보다 현실적인 결과를 제공하지만 일차차폐벽내에서는 CASK를 이용한 결과보다 오히려 큰 선속을 보였다. 그러나 이차감마선에 의한 분석결과는 원자로용기 내부에서의 큰 차이에도 불구하고 일차차폐벽을 통과하면서 두결과가 거의 일치하였다. 이것은 BUGLE93 라이브러리가 노심 및 철성분에 대해서는 증가된 핵단면적을 제공하지만 콘크리트 성분에 대한 핵단면적은 오히려 감소하였기 때문이다. 결론적으로. 최소 7피트 두께의 일차차폐벽 외부에서 중성자선속은 감마선속에 비하여 무시할 수 있을 정도이므로. 원자로 내부영역에서 CASK 라이브러리와는 다른 결과를 보이는 BUGLE93 라이브러리를 원자로 일차차폐벽의 방사선차폐해석에 사용할 경우 기존의 CASK 라이브러리를 이용한 해석결과와 동일한 결과를 보이는 것으로 평가되었다.

  • PDF

Probability-Based Performance Prediction of the Nuclear Contaminated Bio-Logical Shield Concrete Walls (원전 방사화 콘크리트 차폐벽의 확률 기반 성능변화 예측)

  • Kwon, Ki-Hyon;Kim, Do-Gyeum;Lee, Ho-Jae;Seo, Eun-A;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.316-322
    • /
    • 2019
  • A probabilistic approach considering uncertainties was employed to investigate the effects on the material characteristics and strength of nuclear bio-logical shield concrete walls, when exposed to long-term radiation during the entire service life. Time-dependent compressive and tensile strengths were estimated by conducting the neutron fluence analysis. For the contaminated concrete, individual compressive and tensile failure probabilities can be possibly evaluated by not only establishing limit-state function withthe predefined critical values but also performing Monte Carlo Simulation. Nuclear power plant types similar to the Kori Unit 1, which was shut off permanently in 2017 after the 40-year operation, were herein selected for an illustrative purpose. Consequently, the probability-based performance assessment and prediction of contaminated concrete walls were well demonstrated.

In-Site Application of Heavyweight Concrete for Radiation Shielding (방사선 차폐용 중량콘크리트의 현장 적용성)

  • Yang, Seung-Kyu;Um, Tae-Sun;Lee, Jong-Ryul;Kim, Yong-Ho;Wu, Sang-Ik;Kim, Tae-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.577-580
    • /
    • 2008
  • This paper was discussed about in-site application of heavyweight(or high density) concrete. Heavyweight concrete was placed with the method of conventional. Placement of conventionally mixed heavyweight concrete is subject to the same considerations of quality control as normal density concrete, except that it is far more susceptible to variations in quality due to improper handling. It is particularly subject to segregation during placement. Segregation of heavyweight concrete results not only in variation of strength but, far more importantly, in variation in density that are intolerable for work this type, since this adversely affects shielding properties. Heavyweight concrete materials and heavyweight concrete should be sampled and tested prior to and during construction to insure conformance with applicable standards and specifications.

  • PDF