• Title/Summary/Keyword: 차폐재료

Search Result 249, Processing Time 0.027 seconds

Design and Manufacturing of Multiscale Hybrid Composites for Electromagnetic Interference Shielding (전자파차폐용 멀티스케일 하이브리드 복합재의 설계 및 제조)

  • Ngouanom, Joel Renaud Gnidakouong;Kim, Myung-Soo;Park, Hyung-Wook;Park, Young-Bin;Jung, Young-Bok;Jeong, Ho-Soon
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.25-30
    • /
    • 2011
  • This paper presents an experimental study on the enhancement of electromagnetic shielding (EMI) properties of glass fiber, carbon fiber, and glass-carbon fiber composites by adding layers of multi-walled carbon nanotubes (MWCNTs). In the case of glass-fiber composites, spraying 0.1~0.2 g of MWCNT over a fiber area of $200mm{\times}200mm$ (1.8~3.6 ${\mu}m$ in thickness) resulted in significant improvement in EMI shielding effectiveness (SE). Also, when applying multiple MWCNT layers, it was more effective to place the layers concentrated near the center of the composite rather than spreading them out. On the contrary, inherently conductive carbon fiber and glass-carbon fiber composites did not show appreciable improvement with the addition of MWCNT layers. In order to maximize the effectiveness of carbon nanomaterials as EMI shielding fillers, it is imperative to understand the effect of these materials on various EMI shielding mechanisms and their interactions.

A Study on Laminated Shielding (박판접합에 의한 전자기파의 차폐)

  • Noh-Hoon Myung
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.2
    • /
    • pp.25-29
    • /
    • 1991
  • In this paper, laminated shielding effectiveness equation is derived from basic shielding theory and this equation is applied to calculate the shielding effectiveness for two typical non-magnetic shielding materials, Aluminium and steel, when they are coated with conductive paint.

  • PDF

Improvement of shieldability and lightweight of radiation protective apron (방사선 방호용 에이프런의 경량화와 차페능 개선)

  • Kim, Chang-Bok;Kim, Young-Keun;Ku, Hal-Bon;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.105-110
    • /
    • 2004
  • 방사선 투시조영 촬영 시 사용되는 방호복의 차폐효율 증가와 경량화는 오랜 시간 연구 대상이 되었다. 이러한 방호복의 질적 향상을 위하여 연구한 결과는 다음과 같다. Apron의 규격인 납 당량 0.25mm에 해당하는 투과선량은 5.2%로 나타났으며, 시료 Sn, Ni, Ti, Cu의 방사선 차폐 효율은 Sn이 가장 높게 나타났다. 증착시료 Sn+Pb 방법에서는 Sn 0.18mm와 Pb 0.1mm, Pb+Sn 방법에서는 Pb 0.1mm와 Sn 0.36mm에서 Apron의 규격인 납 0.25mm 두께로 나타났다. 증착시료 Sn+Pb는 Apron의 규격인 0.25mm 납 당량보다 차폐효율이 높고, 면적당 무게가 가벼워 방호복 물질로 적합한 것으로 사료된다.

  • PDF

Comparative Evaluation of Shielding Performance according to the Characteristics of Eco-friendly Shielding Material Tungsten (친환경 차폐재료 텅스텐 특성에 따른 차폐성능 평가)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.129-136
    • /
    • 2021
  • Radiation shields used in medical institutions mainly use lead to manufacture products and fitments. Although lead has excellent processability and economic efficiency, its use is being reduced due to environmental issues when it is disposed of. In addition, when used for a long time, there is a limit to using it as a shielding film, shielding wall, medical device parts, etc. due to cracking and sagging due to gravity. To solve this problem, copper, tin, etc. are used, but tungsten is mostly used because there is a difficulty in the manufacturing process to control the shielding performance. However, it is difficult to compare with other shielding materials because the characteristics according to the type of tungsten are not well presented. Therefore, in this study, a medical radiation shielding sheet was manufactured in the same process using pure tungsten, tungsten carbide, and tungsten oxide, and the particle composition and shielding performance of the sheet cross-section were compared.As a result of comparison, it was found that the shielding performance was excellent in the order of pure tungsten, tungsten carbide, and tungsten oxide.

Evaluation of the Usefulness of Tungsten Nanoparticles as an Alternative to Lead Shielding Materials in Electron Beam Therapy (전자선 치료시 납 차폐체 대체물질로서의 텅스텐 나노입자의 유용성 평가)

  • Kim, Ji-Hyang;Kim, Na-Kyoung;Lee, Gyu-Yeong;Jung, Da-Bin;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.949-956
    • /
    • 2021
  • The purpose of this paper is to evaluate whether tungsten nanoparticles have a shielding effect on scattered light generated at high doses as an alternative material to lead used to shield scattered light in electron beam therapy. A plate was manufactured to set the position of the dosimeter and the size of the radiation field to be constant. The glass dosimeter was placed at 12 points, which were 1, 2, and 4 cm apart from the center of the field of 10 × 10 cm2 in the cross direction. A total of 12 types of tungsten nanoparticle shields were developed with a thickness of 0.75 mm to 4.00 mm and a size of 10 × 10 cm2 using 0.4, 0.75, and 1 mm materials. Using a linear accelerator, measurements were made four times at 6 MeV and four times at 12 MeV, and the dose intensity was investigated at 100 MU. The 4 mm shielding plate showed the highest shielding effect at 1 cm from the irradiation field. The 1 mm shielding plate at 2 cm from the irradiation field had the lowest shielding effect. As the thickness of the tungsten shielding plate increased, the electron beam's shielding effect increased sharply. It was confirmed that tungsten nanoparticles can reduce the amount of scattered light generated by electron beam therapy. Therefore, this study will provide basic data when follow-up studies are conducted on the shielding ability of tungsten nanoparticles.