• Title/Summary/Keyword: 차폐재료

Search Result 249, Processing Time 0.03 seconds

Properties of Heavyweight Concrete for Radiation Shielding (방사선 차폐용 중량콘크리트의 기초 특성)

  • Yang, Seung-Kyu;Um, Tai-Sun;Lee, Jong-Ryul;Kim, Yong-Ho;Wu, Sang-Ik;Kim, Tae-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.561-564
    • /
    • 2008
  • Concrete is considered to be one of the excellent and versatile shielding material and is widely used for the radiation shielding material. Specially, heavyweight(or high density) concrete is used in counter weights of bascule and lift bridges, but it is generally used in radiation shielding structures and differ from normal weight concrete by having a higher density and special compositions to improve its attenuation properties. Thorough examination and evaluation of heavyweight aggregate sources are necessary to obtain material suitable for the type of shielding required. Therefore, this paper aims to study mechanical properties of heavyweight concrete by using normal cement, natural and heavyweight aggregate.

  • PDF

Evaluation of Shielding Performance of Tungsten Containing 3D Printing Materials for High-energy Electron Radiation Therapy (고에너지 전자선 치료 시 텅스텐 함유 3D 프린팅 물질의 차폐 성능 평가)

  • Yong-In Cho;Jung-Hoon Kim;Sang-Il Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.641-649
    • /
    • 2023
  • This study compares and analyzes the performance of a shield manufactured using 3D printing technology to find out its applicability as a shield in high-energy electron beam therapy. Actual measurement and monte carlo simulations were performed to evaluate the shielding performance of 3D printing materials for high-energy electron beams. First, in order to secure reliability for the simulation, a source term evaluation was conducted by referring to the IAEA's TRS-398 recommendation. Second, to analyze the shielding performance of PLA+W (93%), a specimen was manufactured using a 3D printer, and the shielding rate by thickness according to electron beam energy was evaluated. Third, the shielding thickness required for electron beam treatment was calculated through a comparative analysis of shielding performance between PLA+W (93%) and existing shielding bodies. First, as a result of the evaluation of the source term through actual measurement and simulation, the TRS-398 recommendation was satisfied with an error of less than 1%, thereby securing the reliability of the simulation. Second, as a result of the shielding performance analysis for PLA+W (93%), 6 MeV electron beams showed a shielding rate of more than 95% at 3.12 mm, and 15 MeV electron beams showed a shielding rate of more than 90% at 10 mm thickness. Third, through simulations, comparative analysis between PLA+W (93%) materials and existing shields showed high shielding rates within the same thickness in the order of tungsten, lead, copper, PLA+W (93%), and aluminum. 6 MeV electron beams showed almost similar shielding rates at 5 mm or more and 15 MeV electron beams. Through this study in the future, it is judged that it can be used as basic data for the production and application of shielding bodies using PLA+W (93%) materials in high-energy electron beam treatment.

A study on Manufacture of EMI Composite Powder by the Electroless Ni Plating Method (무전해 니켈도금방법을 이용한 EMI 복합분말제조에 관한 연구)

  • Joung, I.;Yoon, S.R.;Han, S.N.;Na, J.H.;Kim, C.W.
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.444-449
    • /
    • 1998
  • There are various shielding materials that have been considered; the use of a metallic plate or the layering of a conductive material on a plastic surface and the insertion of filler in plastics. All of these methods have shown their merits and weakness. Therefore, many studies have concentrated on developing materials that effectively cut down EMI without increase in weights of housing materials. In these respects, this study has focused on investigations of the shielding effect of materials that have electroless nickel plating on the lamella structured micro particles surface with low specific gravity. When a film of electroless nickel were plated on a micro particle surfaces and then mixed with paint, the electromagnetic shielding effects were measured as 63dB. Although these effects were less than that 90dB of the copper plate, trials in a series of 6 times increased the shielding effect by IOdB and is applicable to wide range of EMI shielding.

  • PDF

Effects of laminated structure and fiber coating on tensile strength of radiation shielding sheet (방사선 차폐시트의 적층 구조와 섬유 코팅의 융합적인 현상이 인장강도에 미치는 영향)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.83-88
    • /
    • 2020
  • Recently, radiation shielding sheets made of eco-friendly materials have been widely used in medical institutions. The shielding sheet is processed into a solid form by thermoforming by mixing a shielding material with a polymer material. The base is resin-based and has a limit in tensile strength, and for this purpose, fibers such as non-woven fabrics are used on the surface. The shielding sheet process technology has a problem in that the tensile strength rapidly decreases when the content of the shielding material is increased to increase the shielding performance. In order to improve this, this study intends to compare and evaluate the method of laminating and coating the fibers in the sheet process. In comparison of the three types of sheets, there was no difference in shielding performance between the fiber-coated sheet and the compression sheet, but there was a large difference in tensile strength.

A study on unbalanced load characteristics evaluation of 22.9kV HTS Cable (22.9 kV 초전도케이블 불평형 부하특성 평가 시험 연구1)

  • Choi, H.O.;Ryoo, H.S.;Sohn, S.H.;Lim, J.H.;Hwang, S.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.341-341
    • /
    • 2009
  • 초전도 케이블의 대용량 전력수송능력을 실계통에 적용하기 위해서는 정상상태 뿐 아니라 계통운용상 발생하는 비정상 상태에 대해서도 안정된 성능을 나타내야 한다. 계통운영시 가장 일반적으로 발생하는 비정상 상태의 하나인 계통불평형부하 상태에서의 초전도 케이블의 특성을 실증적으로 확인하기 위해 한전 고창전력시험센터에서 신뢰성시험을 실시하였다. 삼상 송전계통에서 각 상 도체전류는 각 상의 부하량에 의해 결정이 되므로 과도상태라 해도 상당한 시간동안 도체전류가 불평형일 경우 자기적으로 결합된 차폐층전류의 불평형상태가 발생한다. 차폐층전류는 삼상 순환회로의 중성도체가 존재하지 않는 경우 도체전류와의 차이가 발생하게 되어 자기차폐 실패의 원인이 됨으로서 AC손실 증가요인으로서 영향이 커진다. 본 논문에서는 도체전류의 불평형 상태를 실증적으로 모의 발생시켜 연관된 차폐층 순환전류의 형태 및 특성을 검토함으로서 삼상 초전도 케이블의 불평형 부하특성에 대한 연구 진행경과를 요약한다.

  • PDF

Electrical Properties and Electromagnetic Shielding Effectiveness of Milled Carbon Fiber/Nylon Composites (분쇄형 탄소 섬유/나일론 복합재료의 전기적 성질과 전자파 차폐 효율)

  • 김창제;최형도;서광석;윤호규
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.201-209
    • /
    • 2003
  • DC and AC electrical conductivity and electromagnetic interference shielding effectiveness of milled carbon fiber/nylon composites were investigated with the kind of nylon matrix. Percolation transition at which the conductivity is sharply increased was observed at about 7 vol% of milled carbon fiber. Nylon 46 as a matrix was more effective to obtain high electrical conductivity than nylon 6, and the difference in conductivity was occurred by the treatment of coupling agent. Frequency dependence of AC conductivity could be explained by relaxation phenomenon at just below percolation and resonance phenomenon at 40 vol% of carbon fiber, respectively. Negative temperature coefficient phenomenon was found in all composites. Electromagnetic interference shielding effectiveness was increased with the concentration of carbon fiber. At a high conductivity region the return loss was more dominant to the total shielding effectiveness than the absorption loss.

Magnetic Shielding with Soft Magnetic Materials in the Vicinity of Power Cables (연자성 재료의 전력 케이블 인근 자계 차폐 효과)

  • Kim, Sang-Beom;Hahn, Seung-Ho;Song, Taek-Ho;Jeong, Moon-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1483-1484
    • /
    • 2011
  • 상용 뮤-메탈, 방향성 및 무방향성 규소강판을 출발 재료로 하여 두께 0.1 mm의 차폐재 3 종류를 제조하여 전력 케이블 인근자계 차폐 효과를 조사하였다. 3상 전류일 때, 차폐재 위치의 자기장이 100 ${\mu}T$ 정도이면 뮤-메탈이(SF < 0.1) 가장 효과적이었고, 500 ${\mu}T$ 이상이면 규소강판이(SF 0.3~0.4) 더 효과적이었다. 또한, 안쪽에 방향성 규소강판, 바깥쪽에 뮤-메탈을 함께 둘러쌀 경우 500 ${\mu}T$까지도 SF를 0.1 이하로 할 수 있었다. 한편, 단상 전류에서는 고투자율 소재의 적용은 오히려 자기장을 증가시키는 결과를 보였다. 이상의 결과는 자기장 강도 H의 크기에 따라 각 소재의 투자율 우열이 서로 다른 점과 이로 인해 차폐재 내에 유도되는 자기장 벡터와 원래의 자기장 벡터의 상호 상쇄 및 중첩 작용으로 설명할 수 있었다.

  • PDF

An Experimental Study on the Development of Electromagnetic Shielding Concrete Wall for Shielding High-altitude Electromagnetic Pulse (HEMP) (고고도 전자기파(HEMP)차폐를 위한 전자파 차폐 콘크리트 벽체 개발에 관한 실험적 연구)

  • Choi, Hyun-Jun;Kim, Hyung-Chul;Lim, Sang-Woo;Lee, Han-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.169-177
    • /
    • 2017
  • Rather than causing damage from heat, blast, and radiation of a regular nuclear weapon, recently, it is predicted that North Korea has been inventing high altitude electromagnetic pulse (HEMP) missile in order to incapacitate electronic equipment. HEMP shielding facility is used for military purpose today. Despite the electromagnetic shielding effects from high quality compression plates, problems may include such as the possibility of electromagnetic influx resulting in the welding of the compression plates, and difficulties and high cost of construction. Therefore, in this study, a high electrical conducting material was added to the concrete experimental subject to ensure the shielding effect through electromagnetic waves to for the concrete structure, instead of building a shielding facility separately for the structure. Also, among the experimental subjects, 100 ${\mu}m$ of Iron-Aluminum alloy metal spraying coat was applied to two types with the highest shielding effect, and to two types with the lowest shielding effect. The result of the experiment indicates that experimental subjects added with a high electrical conductivity material did not meet the minimum shielding criteria of MIL-STD-118-125-1 standard, but all the experimental material applied to the metal spraying coating satisfied the minimum shielding criteria. In conclusion, it is considered that 100 µm of Iron-Aluminum alloy metal spraying coat contains high efficiency in the HEMP shielding.

Analysis of Electromagnetic Wave Shielding Effectiveness from Electrical Conductivity of Metallized Conductive Sheets (전도성 금속 피복재의 전기전도도에 의한 전자파 차폐효과 분석)

  • Kim, Yeong-Sik;Choe, Ik-Gwon;Kim, Seong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.913-918
    • /
    • 1999
  • As an alternative evaluation method of electromagnetic shielding properties, the material parameters are considered in determining the qualitative value of shielding effectiveness. The specimens are metallized nylon fabrics with the thickness of about 0.1 mm and the electrical conductivities in the range from 6.4$\times$10~2.4$\times$10(sup)5 mhos/m. On the basis of shielding theory, the shielding effectiveness (which is a sum of reflection loss and absorption loss) has been determined from the material parameters of the barrier sheets. For the conductive fabrics, the dominant shield mechanism is predicted to be reflection loss, which shows an increasing function of electrical conductivity. Comparing these theoretical value with the directly measured surface impedances, the error range is found to be within 10 dB, which demonstrates that the proposed material-parameters method can be a convenient way to determine the electromagnetic shielding properties.

  • PDF

Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties (Indium Tin Oxide (ITO) 투광성 박막의 제조 및 전자파 차폐특성)

  • Kim, Yeong-Sik;Jeon, Yong-Su;Kim, Seong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1055-1061
    • /
    • 1999
  • Indium Tin Oxide (ITO) films were fabricated by vacuum deposition technique and their microwave shielding properties were investigated for the application to the transparent shield material. The vacuum coating was conducted in a RF co-sputtering machine. The film composition and structure associated with the sputtering conditions (argon and oxygen pressure. substrate temperature. RF input power) were investigated for the attainment of high electrical conductivity and good transparency. The electrical conductivity of IT0 films fabricated under the optimum deposition conditions (substrate temperature : $300^{\circ}C$. Ar flow rate : 20 sccm, Oxygen flow rate : 10 sccm, In/Sn input power : 50/30 W) showed 5.6$\times10^4$mho/m. The optical transparency is also considerably good. The microwave shielding properties including the dominant shielding mechanism are investigated from the electrical conductivity, thickness and skin depth of the ITO films. The total shielding effectiveness is then estimated to be 26 dB, which provides a suggestion that the IT0 films can be effectively used as the transparent shield material.

  • PDF