• Title/Summary/Keyword: 차종 식별

Search Result 14, Processing Time 0.025 seconds

A Study on Classification of Types of Vehicles using Texture Features (질감특성을 이용한 차종 식별에 관한 연구)

  • Kim, Kyong-Wook;Lee, Hyo-Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.737-740
    • /
    • 2004
  • 본 논문에서는 차종 식별을 위해 차량 영상의 질감 특징을 사용하였다. 차량의 질감 특징 정보를 얻기 위한 관심영역으로 라디에이터 그릴 부분을 선택하였다. 추출된 관심영역으로부터 GLCM(Gray Level Co-occurrence Matrix)을 사용하여 질감 특징 값을 추출하였고, 그 특징 값들을 입력으로 취하는 3층의 신경회로망을 구성한 후 역전파 학습 알고리즘을 사용하여 학습을 시켜서 차종 식별을 시도하였다.

  • PDF

Vehicle Identification based on Appearance (차량 외형에 따른 차종 식별)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Ahn, Woo-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.101-102
    • /
    • 2016
  • 본 논문에서는 차량의 특징점들 사이의 간격과 크기의 비례식으로 자동차의 차종을 식별하는 방법을 제시한다. 자동차 관련 영상은 그 편의성을 위하여 기본 RGB모델에서 Gray색상 모델로 변환시켜 사용한다. 자동차의 배경 제거는 Canny Edge Direction을 통하여 수행하고 외곽선 검을을 통하여 원하는 특징 점을 얻는다.

  • PDF

Car Identification - Interval Size (차종 식별 - 간격 크기에 따른)

  • Kim, Do-Kwan;Shi, Seong-Yoon;Lee, Hyun-Chang;Rhee, Yang-Won;Park, Ki-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.107-108
    • /
    • 2016
  • Our study proposes the methods of distinguishing vehicle types using the interval and size of the car. The car videos converts the basic RGB model to Gray model for use and through Canny Edge Direction, it eliminates the background of the car while obtaining feature points through the detection of contours.

  • PDF

Development of Car Type Classification Algorithm on the UAV platform using NCC (NCC기법을 이용한 무인항공기용 차종 식별 알고리즘 개발)

  • Jeong, Jae-Won;Kim, Jeong-Ho;Heo, Jin-Woo;Han, Dong-In;Lee, Dae-Woo;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.582-589
    • /
    • 2012
  • This paper describes the algorithm recognizing car type from the image received from UAV and the recognition results between three types of car images. Using the NCC(Normalized Cross-Correlation) algorithm, geometric information is matched from template images. Template images are obtained from UAV and satellite map and indoor experiment is performed using satellite map. After verification of the possibility, experiment for verification of same car type recognition is performed using small UAV. In the experiment, same type cars are matched with 0.6 point similarity and truck with similar color distribution is not matched with template image of a sedan.

Design and Implementation of Vision Box Based on Embedded Platform (Embedded Platform 기반 Vision Box 설계 및 구현)

  • Kim, Pan-Kyu;Lee, Jong-Hyeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.191-197
    • /
    • 2007
  • Vision system is an object recognition system analyzing image information captured through camera. Vision system can be applied to various fields, and vehicle recognition is ole of them. There have been many proposals about algorithm of vehicle recognition. But have complex calculation processing. So they need long processing time and sometimes they make problems. In this research we suggested vehicle type recognition system using vision bpx based on embedded platform. As a result of testing this system achieves 100% rate of recognition at the optimal condition. But when condition is changed by lighting, noise and angle, rate of recognition is decreased as pattern score is lowered and recognition speed is slowed.

Development of a Vehicle Classification Algorithm Using an Micro-Cell Detector on a Freeway (자석식 검지기를 이용한 차종인식 알고리즘 개발)

  • 김수희;조형기;이철기;오영태
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10b
    • /
    • pp.149-149
    • /
    • 1998
  • 차종구분의 필요성은 교통공학 및 계획분야에서 교통패턴을 파악할 필요가 있으며 도로의 포장설계와 같은 구조적 측면, 교통관련자료구축 등에서도 중요하다. 현재 국내에서 운영중에 있는 각종검지기 체계들은 외국에서 개발한 체계로서 여러 가지 다양한 센서를 복합구성하여 차종을 구분하는 고가의 장비들이다. 이에 대한 국내의 연구사례는 극히 드물다고 볼 수 있다. 지금까지 주를 이룬 국내 연구사례를 보면 루프검지기를 이용한 차종구분이 주를 이루고 있다. 현재 루프검지기의 대체검지기(영상검지기, 자석검지기)개발이 활발히 진행되고 있으며 본 연구에서 이용되는 검지기는 자석검지기로서 루프검지기에 비하여 설치가 간단하고 파손의 우려가 적으며 유지관리 및 보수가 손쉽고 비용면에서도 저렴하다는 것이 장점이라 하겠다. 이에 최근에 개발되어진 단일 자석검지기를 이용한 실시간 차종인식 알고리즘을 개발하고, 현장실험을 통한 현장 적용성을 검토한다. 고속도로에 설치되어 있는 자석검지기를 이용하여 자료를 수집하며 분석에 이용되는 자료는 개별차량에 대하여 자속밀도의 변화를 주파수값으로 변환한 Digital Data값이다. 그 수치를 토대로 각 차량의 점유시간을 파악하여 각 차량의 점유시간동안 파형의 특징을 추출하여 각 특징들을 기초로 하여 각 차량이 나타내는 고유의 파형을 식별하는 패턴인식 방법으로 접근한다. 본 연구에서는 검지기 매설장소의 유한성 및 연구대상 도로의 특성으로 인하여 다양한 차종의 자료수집이 용이하지 못하여 시험가능한 자료수가 많은 차종을 대상으로 분석한다. 차종인식 알고리즘상의 차종분류는 건설교통부 차종분류기준에 따라 우선 구분이 확실한 차종으로 나눈후 단계적으로 세부적 차종분류로 접근한다.의 영향들을 고려함으로써 가로망 설계 과정에서 가로망의 상반된 역할인 이동성과 접근성의 비교가 가능한 보다 현실적인 가로망 설계 모형을 구축하고자 한다. 지금까지 소개된 가로망 설계모형들은 용량변화에 대한 설계변수의 형태에 따라 이산적 가로망 설계 모형과 연속적 가로망 설계모형으로 나뉘어지게 된다. 본 논문의 경우, 계산속도의 향상 측면에서는 연속적 가로망 설계 모형을 도입할 수 있지만, 이때 요구되는 도로용량이 이산적인 변수(차선 수)로 결정되어야만 신호제어 변수를 결정할 수 있기 때문에, 이산적 가로망 설계 모형이 사용된다. 하지만, 이산적 설계모형의 경우 조합최적화 문제이므로 정확한 최적해를 구하기 위해서는 상당한 시간이 소요되며, 경우에 따라서는 국부 최적해에 빠지게 된다. 이러한 문제를 극복하기 위해, 우선 이상적 모형의 근사화, 혹은 조합최적화문제를 위해 개발된 Simulated Annealing기법의 적용, 연속적 모형의 변수를 이산화하는 방법 등 다양한 모형들을 고려해 본 뒤, 적절한 모형을 적용할 것이다. 가로망 설계 모형에서 신호제어를 고려하기 위해서는 주어진 가로망에 대한 통행 배정과정에서 고려되는 통행시간을 링크통행시간과 교차로 지체시간을 동시에 고려해야 하는데, 이러한 문제의 해결을 위해서 최근 활발히 논의되고 있는 교차로에서의 신호제어에 대응하는 통행배정 모형을 도입하여 고려하고자 한다. 이를 위해서 지금까지 연구되어온 Global Solution Approach와 Iterative Approach를 비교, 검토한 뒤 모형에 보다 알맞은 방법을 선택한다. 차량의 교차로 통행을 고려하는 performance function의 경우 비신호 교차로와 신호교차로에 대

  • PDF

Development of Vehicle Classification Algorithm Using Magnetometer Detector (자석검지기를 이용한 차종인식 알고리즘개발)

  • 김수희;오영태;조형기;이철기
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.4
    • /
    • pp.111-124
    • /
    • 1999
  • The Purpose of this thesis is to develop a vehicle classification algorithm using single Magnetometer detector during presence time of vehicle detection and is to examine a held application from field test. We collected data using Magnetometer detector on freeway and used digital data to change voltage values according to magnetic flux density in analysis. We collected these datum during the presence time and then obtained characteristics from wave form in these datum. Based on these characteristics, We used the following three methods for this a1gorithm :1. Template Matching Method,2. Neural Network Method using Back-propagation Algorithm 3. Complex Method using changed slope points and mixing method 1, 2. Of course, Before processing of over three methods, These data were processed normalizing by 20, 40 of size in only X axis and moving average by 0, 3, 4, 5 of size. Vehicle classification were Processed in three steps ; 2, 3, 5 types classification. In 2 types vehicle classification, recognition rate is 83% by template matching method.

  • PDF

Car Identification Using Comparing Car Size (크기 비교를 통한 차량 식별)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.488-489
    • /
    • 2019
  • We propose a method to identify vehicle type by the formula of distance between feature points of vehicle and proportional rate of size. Car images are converted from the basic RGB model to the gray color model. Perform Canny Edge Direction to remove the background image of the car. The desired feature points are obtained through contour extraction.

  • PDF

Identification of Vehicle Using Edge Detection (에지 검출에 의한 차량 식별)

  • Shin, SY;Kim, DK;Lee, CW;Lee, HC;Lee, TW;Park, KH
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.382-383
    • /
    • 2016
  • Canny edge detection of the image is composed of four kinds of Gaussian filter, gradient calculation, Non-maximum suppression, and Hypothesis Thresholding. Feature is the ratio between the vehicle body, the windows, and the wheels obtained from the edge image. Features that make the proportion of these vehicles are different for each respective model. We have identified by application of this algorithm where only a small vehicle.

  • PDF

Recognition Model of the Vehicle Type usig Clustering Methods (클러스터링 방법을 이용한 차종인식 모형)

  • Jo, Hyeong-Gi;Min, Jun-Yeong;Choe, Jong-Uk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.369-380
    • /
    • 1996
  • Inductive Loop Detector(ILD) has been commonly used in collecting traffic data such as occupancy time and non-occupancy time. From the data, the traffic volume and type of passing vehicle is calculated. To provide reliable data for traffic control and plan, accuracy is required in type recognition which can be utilized to determine split of traffic signal and to provide forecasting data of queue-length for over-saturation control. In this research, a new recognition model issuggested for recognizing typeof vehicle from thecollected data obtained through ILD systems. Two clustering methods, based on statistical algorithms, and one neural network clustering method were employed to test the reliability and occuracy for the methods. In a series of experiments, it was found that the new model can greatly enhance the reliability and accuracy of type recongition rate, much higher than conventional approa-ches. The model modifies the neural network clustering method and enhances the recongition accuracy by iteratively applying the algorithm until no more unclustered data remains.

  • PDF