• Title/Summary/Keyword: 차음패널

Search Result 31, Processing Time 0.023 seconds

Analysis of Sound Insulation Performance of Honeycomb Composite Panels for Cruise Ships (크루즈선박용 허니컴 패널의 차음 성능 해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Roh, Jae-Ouk;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.234-240
    • /
    • 2014
  • In this paper, the interface matrix of honeycomb composite panel has been derived by the governing equation of a honeycomb sandwich panel. The interface matrix of honeycomb panel is added to the previously developed transfer matrix method, thus analysis of the multi-layered insulation composite panel with honeycomb is accomplished. Furthermore, predictions of sound transmission loss(STL) for the ship's insulation panel with honeycomb and mineral wool are presented. The insulation performance of the honeycomb used for skin of the ship's insulation panel is better than that of 0.35 mm steel panel by 2dB, approximately. Although honeycomb panel has inefficient insulation performance beside steel panel, honeycomb panel achieve improvements in the performance of weight reduction. The surface density of the panel with honeycomb is rather than with steel by $5.2kg/m^2$. It is decrease in weight by 31.7 %.

Development of multiple panels with high sound insulation (고성능 복합차음패널 개발)

  • Kang Hyun-Ju;Kim Bon-Ki;Shin Sang-Ho;Kim Jung-Hoon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.201-202
    • /
    • 2004
  • 고성능 복합 차음패널 개발을 위해 다양한 복합패널의 차음 성능을 측정하고 이를 토대로 최적의 설계변수를 도출하여 , 설계제한조건 내에서 최대의 차음성능을 갖는 복합차음패널을 개발하였다. 특히, 본 연구에서는 Mini-chamber를 이용함으로서, 차음측정을 위해 사용되는 $10m^{2}$ 이상의 시편 대신 $0.6m^{2}$ 의 시편을 사용함으로써, 시편 제작비 및 개발기간을 대폭 줄일 수 있었다. 주요 설계안으로서 stud를 최적화 한 결과, Mini-Chamber에서는 약 5dB의 차음 성능을 향상 시킬 수 있었으며, 잔향실 측정의 경우 약 $2^{-3}dB$의 차음 성능이 향상되었다.

  • PDF

Sound Insulation Properties of Polymer Soundproof Panels (폴리머 계열 방음패널의 차음특성 비교 분석)

  • Lee, Woo-Mi;Lee, Ju Haeng;Son, Jin-Hee;Kim, Il-Ho;Park, Jae-Roh;Kim, Kwang Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.592-597
    • /
    • 2013
  • It is widely known that the sound insulation of soundproof panel is highly correlated to two factors, surface density of material and the frequency of noise. Accordingly, the character of traffic noise released in actual situation is important requisite for determining thickness to determine surface density and material of soundproof panel. This present study selected polymer panel with advantage of light weight and workability and evaluates according to frequency of traffic noise. Polypropylene (PP) and high-density polyethylene (HDPE) were selected as subjects based on economic valuation and efficiency. The sound transmission loss of selected polymer panels were compared with the currently used panels such as polycarbonate (PC) and polymethyl methacrylate (PMMA) depending on thickness and materials. As a result, PC showed the highest sound transmission loss followed by PMMA, HDPE, and PP in range of mass law. In terms of acoustic performance on thickness, the transmission loss increased with thickness of soundproof panel meanwhile coincidence dip was observed in lower frequency where had reduced transmission loss. Therefore, it is suggested that after determining target frequency, the kind of materials and thickness of soundproof panel need to be designed so that traffic noise can be more efficiently reduced.

A Study on the Sound Insulation Characteristics of Honeycomb Panels for Offshore Plants (해양플랜트용 허니컴 패널의 차음 특성 연구)

  • Jung, Jae-Deok;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.948-955
    • /
    • 2017
  • Currently, porous materials (e.g., mineral wool) are the core materials used in offshore plant panels, but in spite of their superb acoustic performance, these items must be replaced for environmental reasons. A honeycomb structure is widely used throughout the industry because of its high strength-to-weight ratio. However, research in terms of noise and vibration is minimal. An acoustic study should be conducted by taking advantage of honeycomb structures to replace porous materials. In this study, a simulation was performed assuming that a honeycomb panel is a superposition of symmetric mode and antisymmetric mode. Reliability was verified by comparing a simulation results based on a theory with a experimental results, and the possibility of the panel as a core material was evaluated by studying the sound insulation characteristics of a honeycomb. As the panel thickness increased, the coincidence frequency shifted to low frequency. As the angle between horizontal line and oblique wall and cell-size decreases, the sound insulation performance is improved. And as the cell-wall thickness increased, the sound insulation performance improved.

Comparison of Sound Transmission through Single and Double-layer Polymer Panels (폴리머계 단일 및 이중구조 방음패널의 차음특성 비교분석)

  • Kim, Il-Ho;Lee, Ju Haeng;Son, Jin-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.597-603
    • /
    • 2014
  • The aim of the present study is to compare sound performance depending on thickness, materials, and structure of polymer soundproof panels consisting of PC, PMMA, HDPE, and PP, respectively. As a result of comparing sound transmission loss (STL) of single layer panel made of four types of polymer, the better sound transmission loss was obtained in order of PC, PMMA, HDPE, and PP, which was obviously followed mass law. 8 mm of single panel showed 5~6 dB(A) greater STL than that of 4 mm panels and lower frequency for coincidence effect so that STL of 8 mm panels decreased around 4,000~5,000 Hz, indicating less STL of 4 mm panels than those of 8 mm. When it comes to structure, 4 mm panels with air layer appeared similar value of STL with 8 mm single panels under 300 Hz. In range of high frequency above 2,000 Hz, 4 mm panels with air layer performed better than 8 mm of single layer panel while resonance effects were observed at 500~630 Hz. It was found that these results could be practically utilized as fundamental data for noise barriers design considering the change to each condition.

An experimental study on the field sound insulation performance of the light weight concrete panel using bottom ash (저회를 이용한 경량패널의 현장 차음성능에 관한 실험 연구)

  • Chung, J.Y.;Jeong, G.C.;Lee, B.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.65-69
    • /
    • 2007
  • Recently, the method of the apartment building design is changing from wall type to moment structure. Because of this reason, dry wall systems are used plentifully. This study examines the sound insulation performance of the light weight concrete panel using bottom ash. There is the difference of airborne sound isolation between laboratory and field test. For the purpose of searching deviation, we use the prediction tool(Insul 6.0). First, we calculated the prediction data and measured the sound isolation in the wall at the lab. Then, we measured it in the field and compared them. At the base of these datum, we measured the difference.

  • PDF

A Study on the Sound Insulation Performance of the Composite-Material Panel for Railroad Vehicle (철도차량 내장재용 복합재료 패널의 차음성능에 관한 연구)

  • 김봉기;김재승;김현실;강현주;김상렬
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.10-14
    • /
    • 2003
  • Since most of main noise sources of the railroad vehicle are transmitted to the passenger's ear through the vibration of the panel, the sound insulation performance of the panels should be high enough to protect the passenger's ear from the noisy environment. Specifically, the composite materials which are generally used for reducing the weight of the vehicle compartment have the low insulation performance, thus noise control actions should be taken appropriately by considering the insulation performance of the panels. In this study, the insulation performances of the inner/outer panels of the compartment are evaluated. In addition, the contribution of the insulation performance of aluminum door is estimated and compared to those of composite panels. The results can furnish an in-depth understanding of the insulation characteristics of the panel of railroad vehicle.

A Study on the Design of Relocatable Wall System for Office Environment (사무환경을 위한 조립형 벽체 시스템 디자인에 관한 연구)

  • 류호창
    • Archives of design research
    • /
    • v.16 no.1
    • /
    • pp.251-260
    • /
    • 2003
  • The fact that office environment is a principal factor affecting work efficiency is widely accepted. Under such a circumstance, developing relocatable office wall systems is highly required. Psychological, physiological, and economical factors, along with physical factors, should be considered to develope a office wall system. More specifically, competitive price, relocatable efficiency, structural stability, fast installation, health and safety, and aesthetic satisfaction are typical determinants. The evaluation results of newly developed wall system are as below: 1) Panel structural system added with the merits of frame structural system can be studied to accomplish minimal disruption to workplace and better finish details. 2) To cover up the existing interior defects such as uneven floor and ceiling, flexible solutions must be studied especially when panel structural system is accepted. 3) More consideration must be given to finish materials, section details, sound blocking and absorbtion to enhance the satisfaction level.

  • PDF