• Title/Summary/Keyword: 차세대염기서열분석

Search Result 92, Processing Time 0.028 seconds

The Application of Genome Research to Development of Aquaculture (양식산업에 발전을 위한 유전체 분석 기술 적용)

  • Lee, Seung Jae;Kim, Jinmu;Choi, Eunkyung;Jo, Euna;Cho, Minjoo;Park, Hyun
    • Journal of Marine Life Science
    • /
    • v.6 no.2
    • /
    • pp.47-57
    • /
    • 2021
  • In the fishery industry, global aquaculture production has stagnated due to overfishing of aquatic products, restrictions between countries, and climate change. The aquaculture suggests the possibility of a blue revolution that can be expanded in a new way. The aquaculture industry now accounts for more than half of the fishery products from the sea as a raw material for seafood for human consumption. Various latest biological research methods are being applied for the development of a sustainable aquaculture industry. Genomics has made significant progress in recent years. Since the genome sequence of Atlantic cod was sequenced in 2011, the genomes of more species have been sequenced. The genome information is providing a more robust and productive knowledge base for the aquaculture industry, including breeding and breeding of superior traits, improving disease resistance quality, and optimizing aquaculture feed and feed methods. This review looked at the status of genome analysis technology and the current status of genome research of aquaculture species. The development of genome research technology and massive genomic information is important in solving the challenges of the aquaculture industry and will help sustainable fisheries and aquaculture.

Nontyphoidal Salmonella Meningitis in an Immunocompetent Child

  • Moon, Hye Jeong;Lee, Yoonha;Han, Mi Seon
    • Pediatric Infection and Vaccine
    • /
    • v.29 no.1
    • /
    • pp.54-60
    • /
    • 2022
  • Salmonella meningitis is rare yet poses causes significant neurological morbidity in children. Infants, especially those under 3 months of age, and those with immunocompromised states, such as malignancy, malaria, and human immunodeficiency virus infection, are at increased risk for developing Salmonella meningitis. Herein, we describe a case of Salmonella meningitis in a previous healthy 8-year-old girl who presented with high fever, vomiting, and altered mental status. Group D Salmonella species were isolated in cerebrospinal fluid culture, and no abnormal findings were noted in brain magnetic resonance imaging. Immunoglobulin levels and lymphocyte subset counts were within the normal ranges, and no genetic mutation responsible for primary immunodeficiency disease was detected by next-generation sequencing. The patient's condition improved rapidly with third-generation cephalosporin, and no complications or sequalae developed. Nontyphoidal Salmonella can cause meningitis in immunocompetent children and can be successfully treated with early administration of antibiotics.

Parallelization of Genome Sequence Data Pre-Processing on Big Data and HPC Framework (빅데이터 및 고성능컴퓨팅 프레임워크를 활용한 유전체 데이터 전처리 과정의 병렬화)

  • Byun, Eun-Kyu;Kwak, Jae-Hyuck;Mun, Jihyeob
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.10
    • /
    • pp.231-238
    • /
    • 2019
  • Analyzing next-generation genome sequencing data in a conventional way using single server may take several tens of hours depending on the data size. However, in order to cope with emergency situations where the results need to be known within a few hours, it is required to improve the performance of a single genome analysis. In this paper, we propose a parallelized method for pre-processing genome sequence data which can reduce the analysis time by utilizing the big data technology and the highperformance computing cluster which is connected to the high-speed network and shares the parallel file system. For the reliability of analytical data, we have chosen a strategy to parallelize the existing analytical tools and algorithms to the new environment. Parallelized processing, data distribution, and parallel merging techniques have been developed and performance improvements have been confirmed through experiments.

Comparative Analysis of Gut Microbiota among Broiler Chickens, Pigs, and Cattle through Next-generation Sequencing (차세대염기서열 분석을 이용한 소, 돼지, 닭의 장내 미생물 군집 분석 및 비교)

  • Jeong, Ho Jin;Ha, Gwangsu;Shin, Su-Jin;Jeong, Su-Ji;Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1079-1087
    • /
    • 2021
  • To analyze gut microbiota of livestock in Korea and compare taxonomic differences, we conducted 16S rRNA metagenomic analysis through next-generation sequencing. Fecal samples from broiler chickens, pigs, and cattle were collected from domestic feedlots randomly. α-diversity results showed that significant differences in estimated species richness estimates (Chao1 and ACE, Abundance-based coverage estimators) and species richness index (OUTs, Operational taxonomic units) were identified among the three groups. However, NPShannon, Shannon, and Simpson indices revealed that abundance and evenness of the species were statistically significant only for poultry (broiler chickens) and mammals (pigs and cattle). Firmicutes was the most predominant phylum in the three groups of fecal samples. Linear discriminant (LDA) effect size (LEfSe) analysis was conducted to reveal the ranking order of abundant taxa in each of the fecal samples. A size-effect over 2.0 on the logarithmic LDA score was used as a discriminative functional biomarker. As shown by the fecal analysis at the genus level, broiler chickens were characterized by the presence of Weissella and Lactobacillus, as well as pigs were characterized by the presence of provetella and cattele were characterized by the presence of Acinetobacter. A permutational multivariate analysis of variance (PERMANOVA) showed that differences of microbial clusters among three groups were significant at the confidence level. (p=0.001). This study provides basic data that could be useful in future research on microorganisms associated with performance growth, as well as in studies on the livestock gut microbiome to increase productivity in the domestic livestock industry.

A Bioconversion Study on the Zanthoxylum schinfolium by Fermenting Bacteria and Their Functional Enhancement (유용 발효미생물 활용 생물전환 공정을 활용한 산초열매의 기능성 증대 방안 연구)

  • Lim, Jeong-Muk;Lee, Se-Won;Lee, Seong-Hyeon;Lee, Jeong-Ho;Oh, Byung-Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.64-64
    • /
    • 2018
  • 생물전환(Bioconversion)은 천연소재의 기능성을 증대시키기 위한 방안으로 많은 연구가 진행되고 있으며 다양한 산업에서도 활용되고 있어 유용미생물을 기반 차세대 기술로 각광받고 있다. 이러한 기술의 도입은 식품은 물론 의약품 및 화장품 산업에서도 활발히 사용되고 있으며, 특히 최근 기능성 제품에 대한 소비가 급증함에 따라 그 중요성이 높아지고 있다. 산초(Zanthoxylum schinfolium)는 limonene, citronellal, phellandrene 등의 다양한 유효물질을 함유하고 있으며 유효성분들로부터 유래되는 항산화 활성과 항암활성, 항균활성 등의 효능을 지니는 것으로 보고된바 있다. 본 연구의 생물전환 공정에 사용된 유산균들은 전통 발효식품으로 알려진 다양한 젓갈류로부터 분리하였으며, 16S rDNA 염기서열 분석을 통해 유전학적 특성을 확인하였다. 또한 확보된 유산균들을 사용하여 산초(전북 진안군) 분말의 발효공정을 수행하였으며, 산초의 최적 추출조건을 선정하고 추출물을 제조하여 생물전환 공정 전 후 활성의 변화추이를 관찰하였다. 추출물의 활성평가는 항산화 효능 및 유효성분 함량을 평가하기 위하여 DPPH radical scavenging activity와 total polyphenol 함량을 평가하고 세포주를 활용해 MTT assay, Nitric oxide(NO) 생성억제 효능을 확인하여 세포독성 및 항염증 활성을 확인하였다. 실험결과, 생물전환 공정에 사용할 유용 미생물을 확보하기 위한 실험을 통해 다양한 젓갈류에서 다양한 미생물을 확보할 수 있었으며 약 16종의 유산균을 분리하였다. 분리된 미생물을 사용하여 산초 분말의 생물전환 공정을 실시한 결과, 5종의 유용미생물 처리에서 무처리 대비 DPPH radical 소거능 및 polyphenol 함량이 유의적으로 증가됨을 확인할 수 있었다. 그 중 가장 높은 활성을 나타내는 균주를 16S rDNA 염기서열 분석을 통해 확인한 결과 Weissella confusa D1로 확인되었다. 선별 균주를 활용한 생물전환 공정 후 항산화 활성은 대조군 대비 약 120%의 활성을 나타냈으며, polyphenol의 함량은 약 126%로 증가하는 것을 확인할 수 있었다. 더 나아가 생물전환 공정 후 산초추출물의 세포독성은 처리전과 비교하여 월등히 감소하는 경향을 확인할 수 있었으며, 항염효능 또한 증가하는 경향을 나타내는 것이 확인되었다.

  • PDF

Phylogenetic characteristics of bacterial populations and isolation of aromatic compounds utilizing bacteria from humus layer of oak forest (상수리림 부식층으로부터 방향족 화합물 분해세균의 분리 및 세균군집의 계통학적 특성)

  • Han, Song-Ih
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.175-182
    • /
    • 2016
  • In this study, we isolated aromatic compounds (lignin polymers) utilizing bacteria in humus layer of oak forest and investigated phylogenetic characteristics and correlation with major bacterial populations in the humus layer by pyrosequencing. Forty-two isolates using aromatic compounds such as p-anisic acid, benzoic acid, ferulic acid and p-coumaric acid were isolated and phylogentic analyses based on 16S rRNA gene sequences showed that the isolates belonged to the genus Rhizobium, Sphingomonas, Burkhorlderia, and Pseudomonas. Among these, Burkhorlderia species which belong to Betaproteobacteria class occupied 83% among the isolates. The bacterial populations in humus layer of oak forest were characterized by next generation pyrosequencing based on 16S rRNA gene sequences. The humus sample produced 7,862 reads, 1,821 OTUs and 6.76 variability index with 97% of significance level, respectively. Bacterial populations consist of 22 phyla and Betaproteobacteria were the major phylum consisting of 15 genera including Burkholderia, Polaromonas, Ralstoria, Zoogloea, and Variovorax. Approximately fifty percentage of them was Burkholderia. Burkholderia as the majority of population in the humus was considered to play a role in degrading lignin in humus layer of oak forest.

Big Data Analytics in RNA-sequencing (RNA 시퀀싱 기법으로 생성된 빅데이터 분석)

  • Sung-Hun WOO;Byung Chul JUNG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • As next-generation sequencing has been developed and used widely, RNA-sequencing (RNA-seq) has rapidly emerged as the first choice of tools to validate global transcriptome profiling. With the significant advances in RNA-seq, various types of RNA-seq have evolved in conjunction with the progress in bioinformatic tools. On the other hand, it is difficult to interpret the complex data underlying the biological meaning without a general understanding of the types of RNA-seq and bioinformatic approaches. In this regard, this paper discusses the two main sections of RNA-seq. First, two major variants of RNA-seq are described and compared with the standard RNA-seq. This provides insights into which RNA-seq method is most appropriate for their research. Second, the most widely used RNA-seq data analyses are discussed: (1) exploratory data analysis and (2) pathway enrichment analysis. This paper introduces the most widely used exploratory data analysis for RNA-seq, such as principal component analysis, heatmap, and volcano plot, which can provide the overall trends in the dataset. The pathway enrichment analysis section introduces three generations of pathway enrichment analysis and how they generate enriched pathways with the RNA-seq dataset.

Correlation between Disease Occurrences and Microbial Community Structure by Application of Organic Materials in Pepper (유기농자재 사용에 따른 고추 병해 발생과 토양 미생물상 구조의 상관관계)

  • Cho, Gyeongjun;Kim, Seong-Hyeon;Lee, Yong-Bok;Kwak, Youn-Sig
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.202-209
    • /
    • 2020
  • Organic farming is necessary to sustainable agriculture, preserve biodiversity and continued growth the sector in agriculture. In organic farming, reduced usage of chemical agents that adversely affect human health and environment, employing amino acids and oil cake fertilizer, plant extracts, and microbial agents are used to provide safe agricultural products to consumers. To investigation microbiome structure, we proceeded on the pepper plant with difference fertilizers and treatments in organic agriculture for three years. The microbial communities were analyzed by the next generation sequencing approach. Difference soil microbiota communities were discovered base on organic fertilizer agents. Occurrences of virus and anthracnose diseases had a low incidence in conventional farming, whereas bacteria wilt disease had a low incidence in microbial agents treated plots. Microbe agents, which applied in soil, were detected in the microbial community and the funding suggested the applied microbes successfully colonized in the organic farming environment.

Prevalence of PERVs from Domestic Pigs in Korea (pol gene sequences) (국내 돼지에 존재하는 내인성 레트로 바이러스의 분포)

  • Kim, Y.B.;Yoo, J.Y.;Lee, J.Y.;Kim, G.W.;Park, H.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.307-314
    • /
    • 2004
  • Xenotransplantation of porcine organs has the potential to overcome the severe. shortage of human tissues and organs available for human transplantation. The swine represents an ideal source of such organs because of their plentiful supply and their numerous anatomical and physiological similarities to the human. However, this procedure also carries with a number of safety issues relating to the zoonotic infections. Porcine endogenous retrovinJses(PERVs), \Wich are germ line transmitted and persist without symptoms in the pigs, are most concerning zoonotic viroses. In order to analyze the prevalence of PERV in domestic pigs, four kinds of pigs'(Landrace, Berkshire, Yorkshire, and Duroc) genomic DNA were isolated from their hair follicles. PCR analysis was carried out for detection of PERVs using subgroup A/B/C and E pol sequence primers. All pigs (20 heads) tested had high copy number of PERVs within genomes. Subgroup A/B/C and E pol gene sequences from 20 isolates were determined by direct sequencing. Sequence analysis showed pol sequences are highly conserved among intra- and inter-subspecies(99.l and 98.8%, respectively). As a first report of PERV prevalence in Korea pigs, our data would be the basic concepts of PERV transmission study in xenotransplantation.

Lung Adenocarcinoma Mutation Hotspot in Koreans: Oncogenic Mutation Potential of the TP53 P72R Single Nucleotide Polymorphism (한국인의 폐선암 돌연변이 핫스팟: TP53 P72R Single Nucleotide Polymorphism의 발암성 돌연변이 가능성)

  • Jae Ha BAEK;Kyu Bong CHO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.2
    • /
    • pp.93-104
    • /
    • 2023
  • This study aimed to identify new markers that cause lung adenocarcinoma by analyzing mutation hotspots for the top five genes with high mutation frequency in lung adenocarcinoma in Koreans by next generation sequencing (NGS) analysis. The association between TP53 mutation types and patterns with smoking, a major cause of lung cancer, was examined. The clinicopathological characteristics of lung adenocarcinoma patients with TP53 P72R SNPs were analyzed. In Korean lung adenocarcinoma cases, regardless of the smoking status, the TP53 P72R SNP was the most frequently occurring mutational hotspot, in which the nucleotide base was transversed from C to G, and the amino acid was substituted from proline to arginine at codon 72 of TP53. An analysis of the clinicopathological characteristics of lung adenocarcinoma cases with TP53 P72R SNP revealed no significant correlation with the patient's age, gender, smoking status, and tumor differentiation, but a significant correlation with low stage (P-value =0.026). This study confirmed an increase in TP53 rather than EGFR, which was reported as the most frequent mutations in lung adenocarcinoma in Koreans through NGS. Among them, TP53 P72R SNP is the most frequent regardless of smoking status.