• Title/Summary/Keyword: 차분 전개법

Search Result 24, Processing Time 0.018 seconds

Stability and Sensitivity Analysis of Stream Water Quality System Model (하천 수질모형 시스템의 안정성 및 민감도 분석)

  • 심순보;한재석
    • Water for future
    • /
    • v.21 no.4
    • /
    • pp.407-414
    • /
    • 1988
  • The purpose of this paper is to study the following ; (1) how the stability and sensitivity of a given stream water quality model can be analyzed theoretically by means of the stability theory and the sensitivity theory, and (2) point out that the results of this study prove that numerical analysis for the given stream water quality model is reliable, and the model is sensitive for the variations of parameters. A stability theory which is described by the infinite Fourier series is used to analyze the numerical scheme of the model. The numerical shheme is used a backward implicit scheme. a sensitivity theory which is described by the first order linear vector equation is used to analyze theoretically the effect of variations of water quality parameters such as BOD loads, flow rate, temperature. The results of sensitivity theory are of general applicability and are presented in a analytical form. The results of this study seems to be satisfactory for the reliability of stream water quality model with respect to the numerical scheme and the variations of the water quality parameters.

  • PDF

Inversion of spectral analysis of surface waves with analytic Jacobian (해석적 자코비안을 이용한 표면파 기법의 역산)

  • Ha, Hee-Sang
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.233-245
    • /
    • 2002
  • The spectral-analysis-of-surface-waves (SASW) method is a nondestructive testing method based upon generation and detection of elastic stress waves. SASW is widely used as one of the techniques to determine stiffness profile in engineering geophysics. The essential steps involved are construction of an experimental dispersion curve from data collected in situ, and inversion of the dispersion curve to determine the stiffness profile. The main object of this study is to derive an analytical Jacobian for the inversion. If we set the subsurface to N homogeneous layer, it could save 2N times Jacobian calculation compared to numerical jacobian calculation during inversion. To reconstruct a stiffness profile, constrained damped least square method was applied for the inversion. The algorithm was tested for the numerical data and for the real asphalt and tunnel data, which were able to verify the stiffness profile. The stiffness profile reconstructed by the algorithm showed the possibility to appraise the soundness of tunnel with applications SASW.

  • PDF

Wavelet-Galerkin Scheme of Inhomogeneous Electromagnetic Problems in the time Domain

  • 정영욱;이용민;최진일;나극환;강준길;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.550-563
    • /
    • 1999
  • A wavelet-Galerkin scheme based on the time-dependent Maxwell's equations is presented. Daubechies wavelet with two vanishing wavelet moments is expanded for basis function in spatial domain and Yee's leap-frog approach is applied. The shifted interpolation property of Daubechies wavelet family leads to the simplified formulations for inhomogeneous media without the additional matrices for the integral or material operator. The stability condition is formulated. The dispersion characteristics are analyzed and compared with those of finite difference time domain and multiresolution time domain methods. The analyses show the excellent trade-off between the regularity and the support width of the basis function. Although the basis function has only two vanishing wavelet moments, it is enough to provide negligible dispersive error in the numerical analysis and its compact support enables only several involved terms per nodes. The storage effectiveness, execution time reduction and accuracy of this scheme are demonstrated by calculating the resonant frequencies of the homogeneous and inhomogeneous cavities.

  • PDF

Analysis of Carbon Dioxide Separation with Countercurrent Flow in Hollow Fiber Membrane by Numerical Analysis (수치해석에 의한 향류 흐름 중공사 분리막의 이산화탄소 분리 성능 해석)

  • Lee, Yong-Taek;Song, In-Ho;Ahn, Hyo-Seong;Lee, Young-Jin;Jeon, Hyun-Soo;Kim, Jeong-Hoon;Lee, Soo-Bok
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.252-258
    • /
    • 2006
  • A numerical analysis was performed for a separation process of carbon dioxide from a flue gas stream using polyethersulfone hollow fiber membranes. Countercurrent flow governing equations were regarded to be two point boundary-value problem and the nonlinear ordinary differential equation were simultaneously solved using the finite- difference method. A computer program was developed using the Compaq Visual Fortran 6.6 software. The carbon dioxide permeate driving force and the fred gas residence time at the inside of membrane were found to be very important factors affecting the permeation characteristics of carbon dioxide. The carbon dioxide concentration in the permeate and the flow rate of the permeate were found to be slightly larger by a few percent with a countercurrent flow analysis than those with a cocurrent flow analysis.