• Title/Summary/Keyword: 차분 시간 간격

Search Result 47, Processing Time 0.028 seconds

PREPROCESSING OF THE GPS RAW DATA FOR THE PRECISION ORBIT DETERMINATION BY DGPS TECHNIQUE (DGPS 방식에 의한 위성의 정밀궤도 결정을 위한 GPS 원시 자료 전처리)

  • 문보연;이정숙;이병선;김재훈;박은서;윤재철;노경민;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.163-172
    • /
    • 2002
  • This article investigates the problem of data preprocessing for the precision orbit determination (POD) of low earth orbit satellite using GPS .aw data. Several data preprocessing algorithms have been developed to edit the GPS data automatically such that outlier deletion, cycle slip identification and correction, and time tag error correction. The GPS data are precisely edited for the accuracy of POD. Some methods of data preprocessing are restricted to the rate of the collections of the pseudorange and carrier phase measurements. This study considers the preprocessing efficiency varied with the rate, the quality of receiver and the altitude of the satellite's orbit. We also propose the proper methods in accordance with the rate for single frequency and dual frequency receivers.

Swelling of the BAEGDU Stratovolcanic Mountain Observed by DInSAR (DInSAR에 의한 백두산 성층화산암체의 지표변위)

  • 김상완;원중선;김정우;문우일;민경덕
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.128-132
    • /
    • 2001
  • 본 연구의 수행을 위해 23개의 JERS-1 SAR 와 두 개의 ERS-2 SAR 자료를 이용하였다. 비록 ERA-2 pair로부터 생성된 인터훼로그램(interferogram)은 70일의 짧은 간격 자료임에도 불구하고 수목, 구름, 눈 등에 의한 temporal decorrelation 과 낮은 관측각에 의한 layover등에 의해 인터훼로그램의 질이 좋지 않아 분석에 이용될 수 없었다. 반면에 JERS-1 SAR(L 밴드) 자료간의 pair는 매우 긴 시간 간격에도 불구하고 비교적 높은 긴밀도를 가지고 있어, 본 연구지역과 같이 지표 변화률이 매우 느릴 것으로 예상되는 지역에서 장기간의 변화를 관측하기에는 적합하다. 우리는 altitude of ambiguities가 매우 큰 3개의 인터훼로그램과 2-pass, 3-pass DInSAR 방법을 사용하여 1992년 9월과 1998년 10월 까지 약 6년 동안의 지표변위를 관측하였다. 다양한 시간 간격(704, 1056, 1100, 1118, 1232, 2112 days) 별로의 차분 인터훼로그램(differential interferogram)의 결과와 그들간의 상호관계성를 이용하여 연구지역의 지표변위를 분석하였다. 2-pass, 3-pass, 그리고 altitude of ambiguity가 큰 인터훼로그램으로부터 관측된 결과 모두, 백두산 산체와 남서쪽에 위치하고 있는 홍두산을 중심으로 수십km에 걸쳐서 지표가 상승하고 있음을 지시한다. 계산된 지표상승률은 1년에 약 9cm 정도이다.

  • PDF

ADI Finite Difference Method of Linear Shallow Water Wave Equation (선형 천수방탁식의 ADI 유한차분법)

  • 이종찬;서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.108-120
    • /
    • 1992
  • An ADI model for linearized shallow water equation is modified using the method of factorization. In order to show its validity. the computational results are compared both with the analytical solution and with those from existing models, for a rectangualr domain with constant and varying amplitudes at the open boundary. It is shown the accuracy of numerical solutions depends on the size of time step. depth and bottom friction. The modified ADI model is shown to be superior to the existing models such as Leendertse (1971). Butler (1980) and Sheng (1983).

  • PDF

The Pattern Analysis of Dual & Switch Pulse Signal in Multiple Pulse Train Using the Second Deviation of TOA (TOA 2차 차분을 이용한 다중 펄스열의 Dual & Switch 펄스신호 패턴 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.804-807
    • /
    • 2012
  • 본 논문에서는 펄스 레이저(LASER) 송신기에서 방사되는 펄스신호를 레이저 감시 시스템에서 실시간으로 수신하여 수신된 레이저 펄스들의 변화 패턴, 특히 Dual & Switch 신호의 패턴을 분석하는 방법에 대하여 기술하였다. Dual & Switch 신호는 펄스반복시간이 주기적으로 변경되어 펄스 패턴을 예측하기가 매우 어렵다. 본 논문에서는 펄스반복간격(PRI)의 차분을 이용하여 고정, 지터, Dual & Switch 신호의 패턴을 확인하는 방법을 제안하였다. 제안된 방법은 Dual & Switch 신호에 대한 신호 식별능력이 가능하여 레이저 감시시스템 등에 사용할 수 있을 것으로 판단된다.

  • PDF

Accuracy Evaluation of Dispersion-Correction Finite Difference Model for Tsunami Propagation (지진해일 전파 분산보정 유한차분모형의 정밀도 평가)

  • 윤성범;임채호;조용식;최철순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.116-127
    • /
    • 2002
  • Most of finite difference numerical models for the simulation of tsunami propagation developed so for are based on the shallow-water equations which are frequently solved by the leap-frog scheme. If the grid size is properly selected, this numerical scheme gives a correct dispersion effect fur constant water depth. However, if the water depth changes, the dispersion effect of tsunamis can not be accurately considered at every grid point in the whole computational domain. In this study we improved the existing two-dimensional dispersion-correction finite difference numerical scheme. The present scheme satisfies the local dispersion relationships of tsunamis propagating over a slowly varying topography while using uniform grid size and time step. To verify the applicability of the improved numerical model, a tsunami due to 1983 East Sea central earthquake is simulated for Korean harbors with the tide gage records such as Sokcho, Mukho, Pohang and Ulsan in the East Sea. Numerical results of the 1983 tsunami are compared with the measured data and the accuracy of the present numerical model is evaluated.

A Study on Consistency of Numerical Solutions for Wave Equation (파동방정식 수치해의 일관성에 관한 연구)

  • Pyun, Sukjoon;Park, Yunhui
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.136-144
    • /
    • 2016
  • Since seismic inversion is based on the wave equation, it is important to calculate the solution of wave equation exactly. In particular, full waveform inversion would produce reliable results only when the forward modeling is accurately performed because it uses full waveform. When we use finite-difference or finite-element method to solve the wave equation, the convergence of numerical scheme should be guaranteed. Although the general proof of convergence is provided theoretically, the consistency and stability of numerical schemes should be verified for practical applications. The implementation of source function is the most crucial factor for the consistency of modeling schemes. While we have to use the sinc function normalized by grid spacing to correctly describe the Dirac delta function in the finite-difference method, we can simply use the value of basis function, regardless of grid spacing, to implement the Dirac delta function in the finite-element method. If we use frequency-domain wave equation, we need to use a conservative criterion to determine both sampling interval and maximum frequency for the source wavelet generation. In addition, the source wavelet should be attenuated before applying it for modeling in order to make it obey damped wave equation in case of using complex angular frequency. With these conditions satisfied, we can develop reliable inversion algorithms.

Particle Simulation Modelling of a Beam Forming Structure in Negative-Ion-Based Neutral Beam Injector (중성빔 입사장치에서 빔형성 구조의 입자모사 모형)

  • Park, Byoung-Lyong;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.40-47
    • /
    • 1989
  • For the effective design of a beam forming structure of the negative-ion-based neutral beam injector, a computer program based on a particle simulation model is developed for the calculation of charged particle motions in the electrostatic fields. The motions of negative ions inside the acceleration tube of a multiple-aperture triode are computed at finite time steps. The electrostatic potentials are obtained from the Poisson's equation by the finite difference method. The successive overrelaxation method is used to solve the matrix equation. The particle and force weighting methods are used on a cloud-in-cell model. The optimum design of the beam forming structure has been studied by using this computer code for the various conditions of elctrodes. The effects of the acceleration-deceleration gap distance, the thickness of the deceleration electrode and the shape of the acceleration electrode on beam trajectories are exmined to find the minimum beam divergence. Some numerical illustrations are presented for the particle movements at finite time steps in the beam forming tubes. It is found in this particle simulation modelling that the shape of the acceleration electrode is the most significant factor of beam divergence.

  • PDF

Numerical Simulation of Typhoon-generated Waves using WAM with Implicit Scheme (음해법을 이용한 WAM모형의 태풍파랑 수치모의)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2006
  • Implicit numerical scheme using fractional step method and FCT is used to improve the computational efficiency of WAM. Square wave test and simulation of typhoon generated waves are conducted to verify the numerical scheme. The applied scheme shows much less numerical diffusion and due to the implicit character of the scheme much larger time steps can be used without numerical instability. For typhoon MAEMI, comparison between the numerical results and the measured data shows good agreement.

Analysis of a transmission line on Si-based lossy structure using Finite-Difference Time-Domain(FDTD) method (손실있는 실리콘 반도체위에 제작된 전송선로의 유한차분법을 이용한 해석)

  • 김윤석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1527-1533
    • /
    • 2000
  • Basically, a general characterization procedure based on the extraction of the characteristic impedance and propagation constant for analyzing a single MIS(Metal-Insulator-Semiconductor) transmission line is used. In this paper, an analysis for a new substrate shielding MIS structure consisting of grounded cross-bars at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain (FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded cross bar lines over time-domain signal has been examined. The extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor have been examined as functions of cross-bar spacing and frequency. It is shown that the quality factor of the transmission line can be improved without significant change in the characteristic impedance and effectve dielectric constant.

  • PDF

Atrial Fibrillation Pattern Analysis based on Symbolization and Information Entropy (부호화와 정보 엔트로피에 기반한 심방세동 (Atrial Fibrillation: AF) 패턴 분석)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1047-1054
    • /
    • 2012
  • Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical practice, and its risk increases with age. Conventionally, the way of detecting AF was the time·frequency domain analysis of RR variability. However, the detection of ECG signal is difficult because of the low amplitude of the P wave and the corruption by the noise. Also, the time·frequency domain analysis of RR variability has disadvantage to get the details of irregular RR interval rhythm. In this study, we describe an atrial fibrillation pattern analysis based on symbolization and information entropy. We transformed RR interval data into symbolic sequence through differential partition, analyzed RR interval pattern, quantified the complexity through Shannon entropy and detected atrial fibrillation. The detection algorithm was tested using the threshold between 10ms and 100ms on two databases, namely the MIT-BIH Atrial Fibrillation Database.