• Title/Summary/Keyword: 차량-구조물 상호작용

Search Result 32, Processing Time 0.028 seconds

The Effects of Braking of Trains and Roughness of Rails on the Dynamic Behaviors of Bridges (열차의 제동 및 궤도의 조도가 교량의 동적 거동에 미치는 영향)

  • Kim, Doo-Kie;Yang, Sin-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.93-101
    • /
    • 2010
  • The effects of braking of trains and roughness of rails on the dynamic behavior of bridges are studied. The train-bridge interaction is considered by solving Lagrange's equation of motions. Newmark's direct integration is used to solve the governing equations. Dynamic train loads acting on piers at each time step are evaluated, and the wheel-rail roughness effect is considered by using the PSD curve of the rail. The model of braking forces in bridge section is based on the change of deceleration mentioned in ASTM(American Society for Testing and Materials) E503-82. Only skidding frictions without considering rolling frictions are modeled, and the friction coefficient of 0.25 is assumed. Parametric studies in a simply supported PC Box girder bridge are carried out to verify the present method and to analyze the effects of train speed, wheel-rail roughness, braking forces on dynamic train loads.

Train-Structure Dynamic Interaction Analysis of The Bridge Transition Considering Track Irregularity (궤도틀림을 고려한 교대접속부의 열차상호동적거동해석)

  • Choi, Chan-Yong;Kim, Hun-Ki;Chung, Keun-Young;Yang, Sang-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, track dynamic interaction characteristics caused by the vehicle running through transitional section such as bridge abutments were studied using the finite element analysis program. The geometric condition of track was generated by trigonometric function and allowable maximum track irregularity is determined by KORAIL track maintenance criteria. The sub-infrastructure under rail fastener system was modelled by 3D solid elements. To reduce computational cost only half track line is numerically considered and the roller boundary condition was applied to each side of model. In this study, the vehicle-track dynamic interaction analysis was carried out for standard Korean transition section of concrete track and the dynamic behaviors were investigated. The dynamic characteristics considered are wheel load variation, vertical acceleration at body, and maximum Mises stress at each part of transitional section.

Dynamic Analysis of PSC Bridge for a High-Speed Railway Vehicle Using Improved 38-Degree of Freedom Model (개선된 38자유도 차량모델을 이용한 고속철 PSC교량의 동적거동해석)

  • Oh, Soon-Taek;Sim, Young-Woo;Lee, Dong-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A dynamic analysis procedure is developed to provide a better estimation of the dynamic responses of pre-stressed concrete (PSC) box girder bridges on the Korea high speed railway. Particularly, a three dimensional numerical model including the structural interaction between high speed vehicles, bridges and railway endures to analyze accurately and evaluate with in-depth parametric studies for dynamic responses of bridge due to the high speed railway vehicles. Three dimensional frame element is used to model the PSC box girder bridges, simply supported span lengths 40 m. The high-speed railway vehicles (K-TGV) including a locomotive are used as 38-degree of freedom system. Three displacements (vertical, lateral, and longitudinal) as well as three rotational components (pitching, rolling, and yawing) are considered in the 38-degree of freedom model. The dynamic analysis by Runge-Kutta method which are able to analyze considering the dynamic impact factors are compared and contrasted. It is proposed as an empirical formula that the impact factors damaged the bridge load-carrying capacities occurs to the bride due to high-speed vehicle.

Evaluation of Minimum Depth Criterion and Reinforcement Effect of the Soil Cover in a Long-span Soil-steel Bridge (장지간 지중강판구조물의 최소토피고 평가 및 토피지반 보강에 대한 수치해석)

  • 이종구;조성민;정현식;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.67-78
    • /
    • 2004
  • Soil-steel bridges are made of flexible corrugated steel plates buried in the well-compacted granular soil. One kind of possible collapses of these structures could be initiated by shear or tension failure in the soil cover subjected to vehicle loads. Current design codes provide the requirements for the minimum depth of the soil cover to avoid problems associated with soil cover failures. However, these requirements were developed for short span (less than 7.7 m) structures which are made of unstiffened plates of standard corrugation (150$\times$50 m). Numerical analyses were carried out to investigate the behavior of long span soil steel bridges according to thickness of the soil cover. The span of structures were up to 20 m and deep corrugated plates (381$\times$140 m) were used. The analysis showed that the minimum cover depth of 1.5 m could be sufficient to prevent the soil cover failure in the structures with a span exceeding 10 m. Additional analyses were performed to verify the reinforcement effect of the concrete relieving slab which can be a special feature to reduce the live-load effects. Analyses revealed that the bending moment of the conduit wall with a relieving slab was less than 20% of that without a relieving slab in a case of shallow soil cover conditions.

A Study on Efficiency Improvement of the Catenary-Pantograph Dynamic Interaction Analysis Program using Shift Forward Method (Shift Forward 방법을 이용한 가선계-판토그래프 동적 상호작용 해석 프로그램의 효율성 향상에 관한 연구)

  • Lee, Jin-Hee;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.572-578
    • /
    • 2012
  • In the electric railway vehicles, securing stable current collection performance is an important factor which determines the quality of operation and the maximum speed. In order to predict such current collection performance, various analysis methods have been proposed for a long time. Also, investigations for improving the accuracy of the results and the efficiency of the analysis process have been performed. In this paper, a method for the efficiency improvement has been proposed. This method is based on the basic concept that the system equations of motion of a catenary numerical model include only interactive range with a pantograph. In this paper, an algorithm and generalized process for applying proposed method are introduced. Also, validity of the results and utility of the method was verified and studied.

Simulation and Experimental Study on the Impact of Light Railway Train Bridge Due to Concrete Rail Prominence (주행면 단차에 의한 경량전철 교량의 충격 시뮬레이션 및 실험)

  • Jeon, Jun-Tai;Song, Jae-Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.45-52
    • /
    • 2010
  • This study pointed on the dynamic impact of AGT (Automated Guide-way Transit) bridge, due to concrete rail prominence. An experiment was done with 30 m P.S.C. bridge in AGT test line in Kyungsan. An artificial prominence with 10 mm hight, was installed at the mid span of concrete rail. And computer simulation was executed for the artificial prominence. As an experiment result, in the case of with prominence, bridge acceleration responses are increased 50% at the speed range of 20 km/h-60 km/h, and bridge displacement responses increased slightly. With these results, the prominence of concrete rail can be induce excess impact and vibration. And the computer program simulated much the same as experiments. So this program can be used for AGT bridge design and formulate the standard of concrete rail management.

A Dynamic Analysis of PSC Box Bridge Varying Span Lengths for Increased Speeds of KTX (고속철 속도변화에 대한 PSC박스 교량의 경간길이 별 동적해석)

  • Oh, Soon Taek;Lee, Dong Jun;Shim, Young Woo;Yun, Jun Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.204-211
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a better estimation of the dynamic responses of bridge during the passage of high speed railway vehicles. Particularly, a three dimensional numerical model including the structural interaction between high speed vehicles, bridges and railway endures to analyse accurately and evaluate with in-depth parametric studies for dynamic responses of various bridge span lengths running KTX railway locomotive up to increasing maximum speed(450km/h). Three dimensional frame element is used to model the simply supported pre-stressed concrete (PSC) box bridges for four span lengths(40~25m). Track irregularity employed as a stationary random process from the given spectral density functions and irregularities of both sides of the track are assumed to have high correlation. The high-speed railway vehicle (KTX) is used as 38-degree of freedom system. Three displacements (Vertical, lateral, and longitudinal) as well as three rotational components (Pitching, rolling, and yawing) are considered in the 38-degree of freedom model. The dynamic amplification factors are evaluated by the developed procedure under various traveling conditions, such as track irregularity camber, train speed and ballast. The dynamic analysis such as Newmark-${\beta}$ and Runge-Kutta methods which are able to analyse considering the dynamic impact factors are compared and contrasted.

Numerical Analysis for Dynamic Characteristics of Next-Generation High-Speed Railway Bridge (차세대 고속철 통과 교량의 동적특성에 대한 수치해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Yi, Seong-Tae;Jeong, Byeong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • To take into account of the increasing speed of next generation high-speed trains, a new design code for the traffic safety of railway bridges is required. To solve dynamic responses of the bridge, this research offers a numerical analyses of PSC (Pre-stressed Concrete) box girder bridge, which is most representative of all the bridges on Gyungbu high-speed train line. This model takes into account of the inertial mass forces by the 38-degree-of-freedom and interaction forces as well as track irregularities. Our numerical analyses analyze the maximum vertical deflection and DAF (Dynamic Amplification Factor) between simple span and two-span continuous bridges to show the dynamic stability of the bridge. The third-order polynomial regression equations we use predict the maximum vertical deflections depending on varying running speeds of the train. We also compare the vertical deflections at several cross-sectional positions to check the influence of running speeds and the maximum irregularity at a longitudinal level. Moreover, our model analyzes the influence lines of vertical deflection accelerations of the bridge to evaluate traffic safety.

Dynamic Change of Stresses in Subsoil under Concrete Slab Track Subjected to Increasing Train Speeds (열차 증속에 따른 콘크리트 궤도 노반의 동적 응력 변화)

  • Lee, Tae-Hee;Choi, Chan-Yong;Nsabimana, Ernest;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.57-66
    • /
    • 2013
  • Societal interest on a faster transportation demands an increase of the train speed exceeding current operation speed of 350 km/h. To trace the pattern of variations in displacements and subsoil stresses in the concrete slab track system, finite element simulations were conducted. For a simple track-vehicle modeling, a mass-point system representing the moving train load was developed. Dynamic responses with various train speeds from 100 to 700 km/h were investigated. As train speeds increase the displacement at rail and subsoil increases nonlinearly, whereas significant dynamic amplification at the critical velocity has not been found. At low train speed, the velocity of elastic wave carrying elastic energy is faster than the train speed. At high train speed exceeding 400 km/h, however, the train speed is approximately identical to the elastic wave velocity. Nonlinearity in the stress history in subsoil is amplified with increasing train speeds, which may cause significant plastic strains in path-dependent subsoil materials.

A Long-Term Friction Test of Bridge Bearings Considering Running Speed of Next Generation Train (차세대 고속철 주행속도를 대비한 교량받침의 장기마찰시험법)

  • Oh, Soon-Taek;Lee, Dong-Jun;Jun, Sung-Min;Jeong, Shin-Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.34-39
    • /
    • 2016
  • Structural behaviour of PSC box bridge, on which KTX train runs, is analysed up to 500 km/h speed considering 12 stages track irregularity and interaction between bridge and vehicle. To evaluate wheel forces and rotations of vehicle, lateral wheel forces, derail factor and offload factor calculated on the track combining the bridge and 170 m normal track are compared with existing allowed limits. Maximum longitudinal displacement and accumulated sliding distance of the brige bearings for simply supported and 2 span continuous PSC bridges are presented by each running speeds. Long-term friction tests based on EN-1337-2 are conducted between PTFE and DP-mate plates. Finally, the long-term friction tests are proposed to consider the increasing speed of next generation high-speed train.