• Title/Summary/Keyword: 차량 제어 시스템

Search Result 1,108, Processing Time 0.029 seconds

Integrated Flood Disaster Management System for Local Governments using ICT (ICT를 이용한 지자체 홍수통합관리시스템 구축방안)

  • Cho, Wan Hee;Park, Jeong Su;Na, Yu Jin;Shin, Cheol Kyun;Lee, Yong Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.577-577
    • /
    • 2016
  • 기후변화는 전 지구적 현상으로 이로 인한 홍수피해는 심화되고 있다. 기후변화 정부간 협의체 5차 보고서(IPCC, 2014)에 의하면 1980년대 이전 세계 평균 홍수피해액은 70억 달러 수준이었으나 2011년에는 240억 달러로 크게 증가한 것으로 나타났다. 2013년 필리핀에 태풍 '하이옌' 내습으로 인해 6,200여명이 사망하고, 2천여명이 실종되는 피해가 발생하였다. 국내의 경우 2014년 8월 경남 부산지역에는 시간당 130mm가 넘는 국지성 호우에 따라 차량 4,000여대가 침수, 5명 사망 등 약 125억원의 재산피해가 발생한 바 있다. 국회예산정책처(2012)와 소방방재청(2014)에 따르면, 자연재해 중 집중호우 및 태풍에 의한 호우피해가 85%를 차지하였으며, 전국 하천 피해액의 98.7%가 지방 및 소하천에서 발생하고 있다. 이에 따라 중소하천과 같이 소외된 지역의 물복지 향상을 위해서는 홍수재해 상황에 대하여 선제적 효과적 대응을 위한 과학적 체계적인 홍수통합관리 체계의 구축이 요구되고 있다. 특히 홍수관련 유관기관 자료를 연계한 실시간 상 하류 수문상황 모니터링, 홍수분석 및 하천수위별 대응기준 수립, 배수펌프장 등 수리시설원격 제어 등을 포함하는 홍수 통합관리체계 구축과 같은 비구조적 대책의 수립이 제방정비, 저류조 등 구조적 대책과 병행하여 반드시 추진되어야 한다. 이에 K-water는 ICT기반의 물관리기술력과 경험을 활용하여, 인력 기술력 예산 부족 등 열악한 재난관리 여건으로 어려움을 겪고 있는 지자체와 협업을 통해 홍수통합관리체계 구축을 지원하고 있다. 홍수통합관리체계 구축은 지자체 상 하류의 다양한 재난정보를 수집 통합하고, 수집된 정보를 활용한 홍수분석 및 홍수 대응기준 수립을 통해 예방적 재난대응 체계를 마련하는 것으로, K-water는 지난 2010년 남원시를 시작으로 무주군, 군산시, 진안군 등 21개 지자체의 홍수재해 통합관리체계 구축을 지원하고 있다. 특히 남원시의 경우 본 사업을 통한 시스템 구축후 홍수피해액이 50% 감소한 것으로 확인되는 등 재난관련 골든타임을 확보하고 홍수피해 최소화를 위한 홍수재해 통합관리 체계 구축은 이제 선택이 아닌 필수라 할 수 있다. K-water는 물관리 전문 공기업으로써의 역할을 다하고, 예방 중심의 재난관리 체계 마련을 위해 '지자체 맞춤형 홍수통합관리체계' 구축 지원을 지속적으로 확대해나갈 예정이다.

  • PDF

Deep Learning Description Language for Referring to Analysis Model Based on Trusted Deep Learning (신뢰성있는 딥러닝 기반 분석 모델을 참조하기 위한 딥러닝 기술 언어)

  • Mun, Jong Hyeok;Kim, Do Hyung;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-142
    • /
    • 2021
  • With the recent advancements of deep learning, companies such as smart home, healthcare, and intelligent transportation systems are utilizing its functionality to provide high-quality services for vehicle detection, emergency situation detection, and controlling energy consumption. To provide reliable services in such sensitive systems, deep learning models are required to have high accuracy. In order to develop a deep learning model for analyzing previously mentioned services, developers should utilize the state of the art deep learning models that have already been verified for higher accuracy. The developers can verify the accuracy of the referenced model by validating the model on the dataset. For this validation, the developer needs structural information to document and apply deep learning models, including metadata such as learning dataset, network architecture, and development environments. In this paper, we propose a description language that represents the network architecture of the deep learning model along with its metadata that are necessary to develop a deep learning model. Through the proposed description language, developers can easily verify the accuracy of the referenced deep learning model. Our experiments demonstrate the application scenario of a deep learning description document that focuses on the license plate recognition for the detection of illegally parked vehicles.

An Analysis of Satellite Communications System structure for NCW (NCW대비 군 위성통신 구조 분석)

  • Park, Woo-Chul;Cha, Jae-Ryong;Kim, Jae-Hyun
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • As the information age comes out, the aspect of future war brings about the many changes in terms of war-fighting environment. Accordingly, information superiority and intelligence-centric warfare have been important and new war-fighting concept such as NCW(network centric warfare) have been turned up. This paper proposed all-weather core-strategy communications systems guaranteeing not only the real-time transmission of the information collected in a battlefield and expansion, automation, and rapidity of a battlefield but also broadband, mobility, survivability, and flexibility. The proposed military satellite communications system is classified into wideband mass capacity link, survivability, and the system supporting OTM(on the move) communication for the real-time transmission of battlefield information. This paper analyzed the essential operation concepts and core schemes of the U.S. Army's next generation system, TSAT(Transformational Satellite Communication System). Base on the analysis results, this paper proposed that the architecture of next generation military satellite communications systems for NCW have to provide the data rate, anti-jamming capability, network control and management capability which are optimally adaptable for the wireless channel environments such as jamming and interference and to support the variety of platforms like high-speed mobile vehicles, micromini devices, super-high speed unmanned aerial vehicles. Finally, this paper also proposed that next generation military satellite communications systems need the technologies such as the adaptable multi-antenna, laser link, and next-generation anti-jamming waveform.

  • PDF

Performance Analysis of the IEEE 802.11 Broadcast Scheme in a Wireless Data Network (무선 데이터 망에서 IEEE 802.11 브로드캐스트 기법의 성능 분석)

  • Park, Jae-Sung;Lim, Yu-Jin;Ahn, Sang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.56-63
    • /
    • 2009
  • The IEEE 802.11 standard has been used for wireless data networks such as wireless LAN, ad-hoc network, and vehicular ad-hoc network. Thus, the performance analysis of the IEEE 802.11 specification has been one of the hottest issues for network optimization and resource management. Most of the analysis studies were performed in a data plane of the IEEE 802.11 unicast. However, IEEE 802.11 broadcast is widely used for topology management, path management, and data dissemination. Thus, it is important to understand the performance of the broadcast scheme for the design of efficient wireless data network. In this contort, we analyze the IEEE 802.11 broadcast scheme in terms of the broadcast frame reception probability according to the distance from a sending node. Unlike the other works, our analysis framework includes not only the system parameters of the IEEE 802.11 specification such as transmission range, data rate, minimum contention window but also the networking environments such as the number of nodes, network load, and the radio propagation environments. Therefore, our analysis framework is expected to be used for the development of protocols and algorithms in a dynamic wireless data network.

mSFP: Multicasting-based Inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks (센서기반 FPMIPv6 네트워크에서 멀티캐스팅 기반의 도메인간 이동성관리 기법)

  • Jang, Hana;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 2013
  • IP-based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Because of the energy inefficiency of networks-based mobility management protocols can be supported in IP-WSN. In this paper we propose a network based mobility supported IP-WSN protocol called Multicasting-based inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks (mSFP). Based on [8,20], We present its network architecture and evaluate its performance by considering the signaling and mobility cost. Our analysis shows that the proposed scheme reduces the signaling cost, total cost, and mobility cost. With respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 7% and the total cost by 3%. With respect to the number of hops, the proposed scheme reduces the signaling cost by 6.9%, the total cost by 2.5%, and the mobility cost by 1.5%. With respect to the number of IP-WSN nodes, the proposed scheme reduces the mobility cost by 1.6%.

A Study on the Establishment of Disc Braking Force Pattern to reduce the Wear Mass of Pad (패드 마모량 감소를 위한 디스크 제동력 패턴 설정에 관한 연구)

  • Kim, Seog-Won;Kim, Young-Guk;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.786-791
    • /
    • 2007
  • Korean high speed train(HSR-350x) has adopted a combined electrical and mechanical(friction) braking system. Brake blending control unit(BBCU) controls each brake system to fulfill the required brake performances such as braking distance, deceleration and jerk. Also the braking system should be designed considering the economical management, such as effective use of generated braking energy and the minimum wear of friction materials(a pad and a brake shoe). In this paper, we establish the disc braking force pattern that reduces the wear of pad in the disc braking system by minimizing the variance of the instantaneous disk baking energy during braking time, and compare the wear mass of pad between the conventional disc braking force pattern and the established results.

  • PDF

Development of Wireless Smart Sensing Framework for Structural Health Monitoring of High-speed Railway Bridges (고속 철도 교량의 구조 건전성 모니터링을 위한 스마트 무선 센서 프레임워크 개발)

  • Kim, Eunju;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2016
  • Railroad bridges account for 25% of the entire high-speed rail network. Railway bridges are subject to gradual structural degradation or fatigue accumulation due to consistent and repeating excitation by fast moving trains. Wireless sensing technology has opened up a new avenue for bridge health monitoring owing to its low-cost, high fidelity, and multiple sensing capability. On the other hand, measuring the transient response during train passage is quite challenging that the current wireless sensor system cannot be applied due to the intrinsic time delay of the sensor network. Therefore, this paper presents a framework for monitoring such transient responses with wireless sensing systems using 1) real-time excessive vibration monitoring through ultra-low-power MEMS accelerometers, and 2) post-event time synchronization scheme. The ultra-low power accelerometer continuously monitors the vibration and trigger network when excessive vibrations are detected. The entire network of wireless smart sensors starts sensing through triggering and the post-event time synchronization is conducted to compensate for the time error on the measured responses. The results of this study highlight the potential of detecting the impact load and triggering the entire network, as well as the effectiveness of the post-event time synchronized scheme for compensating for the time error. A numerical and experimental study was carried out to validate the proposed sensing hardware and time synchronization method.

Development of Embedded Board for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 임베디드 보드 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1461-1464
    • /
    • 2019
  • In this paper, we propose the development of embedded board for integrated radiation exposure protection fireman's life-saving alarm capable of location tracking and radiation measurement. The proposed techniques consist of signal processing unit, communication unit, power unit, main control unit. Signal processing units apply shielding design, noise reduction technology and electromagnetic wave subtraction technology. The communication unit is designed to communicate using the wifi method. In the main control unit, power consumption is reduced to a minimum, and a high performance system is formed through small, high density and low heat generation. The proposed techniques are equipment operated by exposure to poor conditions, such as disaster and fire sites, so they are designed and manufactured for external appearance considering waterproof and thermal endurance. The proposed techniques were tested by an authorized testing agency to determine the effectiveness of embedded board. The waterproof grade has achieved the IP67 rating, which can maintain stable performance even when flooded with water at the disaster site due to the nature of the fireman's equipment. The operating temperature was measured in the range of -10℃ to 50℃ to cope with a wide range of environmental changes at the disaster site. The battery life was measured to be available 144 hours after a single charge to cope with emergency disasters such as a collapse accident. The maximum communication distance, including the PCB, was measured to operate at 54.2 meters, a range wider than the existing 50 meters, at a straight line with the command-and-control vehicle in the event of a disaster. Therefore, the effectiveness of embedded board for embedded board for integrated radiation exposure protection fireman's life-saving alarm has been demonstrated.