• 제목/요약/키워드: 차량 번호판 인식 알고리즘

검색결과 93건 처리시간 0.022초

딥러닝 기술을 활용한 효과적인 차량 번호판 인식 시스템 (An effective license plate recognition system using deep learning technology)

  • 장성수;정혁준;은애천;하영국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.733-735
    • /
    • 2018
  • 최근의 차량 주차관리 시설, 출입통제가 필요한 장소 그리고 도로 방범카메라를 통한 단속 등 다양한 곳에서 차량 번호판 자동 인식 기술들이 활용되고 있다. 하지만 현재 사용되고 있는 LPR(License Plate Recognition) 시스템에는 많은 장비와 비용이 들어간다는 큰 단점이 존재한다. 본 논문에서는 하나의 컴퓨터와 최소의 카메라를 가지고 할 수 있는 기계학습을 통한 영상처리를 제안하려 한다. 먼저 딥러닝 프레임워크 중 하나인 YOLO(You Only Look Once) [4]를 활용하여 자동차의 번호판 부분의 영역을 검출하고 Grayscale를 통해 햇빛 또는 조명 등의 영향을 감소시켜 번호판의 특징을 보존시킨다. 전처리 작업이 끝난 후 번호판에서 숫자를 인식 하는 부분에서는 k-NN(k-Nearest Neighbor) 알고리즘을 사용하였으며 한글 문자 인식부분은 Template Matching을 이용하였다. 제안한 알고리즘을 사용하여 기존 LPR 시스템에서 획득한 차량이미지를 대상으로 시뮬레이션 한 결과 좋은 결과를 얻을 수 있어 향후 연구 방향의 시스템 확장성의 가능성을 발견할 수 있었다.

YOLOv2 기반의 영상 워핑을 이용한 강인한 오토바이 번호판 검출 및 인식 (Robust Motorbike License Plate Detection and Recognition using Image Warping based on YOLOv2)

  • 당순정;김응태
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.17-20
    • /
    • 2019
  • 번호판 자동인식 (ALPR: Automatic License Plate Recognition)은 지능형 교통시스템 및 비디오 감시 시스템 등 많은 응용 분야에서 필요한 기술이다. 대부분의 연구는 자동차를 대상으로 번호판 감지 및 인식을 연구하였고, 오토바이를 대상으로 번호판 감지 및 인식은 매우 적은 편이다. 자동차의 경우 번호판이 차량의 전방 또는 후방 중앙에 위치하며 번호판의 뒷배경은 주로 단색으로 덜 복잡한 편이다. 그러나 오토바이의 경우 킥 스탠드를 이용하여 세우기 때문에 주차할 때 오토바이는 다양한 각도로 기울어져 있으므로 번호판의 글자 및 숫자 인식하는 과정이 훨씬 더 복잡하다. 본 논문에서는 다양한 각도로 주차된 오토바이 데이트세트에 대하여 번호판의 문자 인식 정확도를 높이기 위하여 2-스테이지 YOLOv2 알고리즘을 사용하여 오토바이 영역을 선 검출 후 번호판 영역을 검지한다. 인식률을 높이기 위해 앵커박스의 사이즈와 개수를 오토바이 특성에 맞추어 조절하였다. 그 후 기울어진 번호판을 검출한 후 영상 워핑(Image Warping) 알고리즘을 적용하였다. 모의실험 결과, 기존 방식의 인식률이 47,74%에 비해 제안된 방식은 80.23%의 번호판의 인식률을 얻었다. 제안된 방법은 전체적으로 오토바이 번호판 특성에 맞는 앵커박스와 이미지 워핑을 통해서 다양한 기울기의 오토바이 번호판 문자 인식을 높일 수 있었다.

  • PDF

명암도 변화값과 기하학적 패턴벡터를 이용한 차량번호판 인식 (A Vehicle License Plate Recognition Using Intensity Variation and Geometric Pattern Vector)

  • 이응주;석영수
    • 정보처리학회논문지B
    • /
    • 제9B권3호
    • /
    • pp.369-374
    • /
    • 2002
  • 본 논문에서는 명암도 변화값과 기하학적 패턴벡터를 이용하여 실시간으로 차량번호판을 추출하고 인식하는 알고리즘을 제안하였다. 일반적으로 차량영상에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 번호판 이외의 다른 영역보다 밀집도가 높은 특성이 있다. 따라서 본 논문에서는 이러한 성질을 이용하여 먼저 명암도 변화값을 사용하여 번호판을 추출하도록 하였으며 영상 입력과정에서 외부 환경에 따라 차량영상이 어둡거나 밝게 입력될 경우에도 동일한 추출 성능을 얻기 위하여 밝기 보정 과정을 수행하였다. 또한 추출된 번호판 영역으로부터 입력 문자의 크기, 이동 및 회전에 무관한 특성 추출을 위해 번호판 영역에서 잡음 제거와 세선화를 적용하여 전처리후 제안한 기하학적 패턴벡터를 이용하여 차량번호를 인식하도록 하였다. 제안한 방법들을 적용한 결과 기존의 원형 패턴벡터 보다 계산 속도가 빠르며, 차량번호판의 크기와 잡음에 무관하며, 불규칙한 조명 상태에서도 정확한 차량 번호를 인식할 수 있었다.

다단계 영상처리 기법을 이용한 차량번호판 추출방법 (Vehicle License Plate Extraction using Multi-level Image Processing Methods)

  • 안운기;장재건
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (상)
    • /
    • pp.275-278
    • /
    • 2003
  • 자동차 번호판 인식 시스템은 영상획득, 번호판추출, 전처리(이진화), 문자영역 분할, 문자인식 등의 5가지 핵심 부분으로 구성된다. 따라서 자동차 번호판 인식 시스템의 최종 인식율은 각 단계의 성능에 따라 직접적인 영향을 받는다. 본 논문은 영상처리 기법을 이용하여 영상에서 번호판 영역을 추출을 위한 연구로 문자인식 단계에서 높은 인식율을 확보할 수 있도록 빠른 연산속도와 추출 정확성을 높일 수 있는 알고리즘을 제안한다.

  • PDF

투영면 컨벌루션과 결정트리를 이용한 상태 적응적 차량번호판 인식 시스템 (Adaptive Vehicle License Plate Recognition System Using Projected Plane Convolution and Decision Tree Classifier)

  • 이응주;이수현;김성진
    • 한국멀티미디어학회논문지
    • /
    • 제8권11호
    • /
    • pp.1496-1509
    • /
    • 2005
  • 본 논문에서는 투영면 컨벌루션과 결정트리 분류기법을 사용하여 주변 환경이 복잡한 차량영상으로부터 실시간으로 번호판을 추출하고 인식하는 적응적 차량번호판 인식 시스템을 제안하였다. 일반적으로 고속도로 톨게이트와 주차장 출입구에서의 차량영상은 설치 카메라와 도로 환경에 따라 차량번호판의 크기, 각도변화, 주변잡음 등으로 매우 다양하므로 번호판 추출과 분할이 어렵다. 따라서 본 논문에서는 차량 영상을 획득한 후 번호판 후보영역을 검출하고 진입 위치 변화에 따라 번호판의 기울기와 크기를 자동으로 보정하여 인식하는 알고리즘을 제안하였다. 제안한 인식 방법은 차량의 에지누적 분포와 번호판의 일정한 명암값 변화 빈도수를 누적한 투영면 컨벌루션과 체인코드를 사용하여 크기와 기울기가 일정하지 않은 번호판으로부터 번호판영역을 정확히 추출하고, 적응적 이진화 기법을 이용하여 문자를 분할하였다. 본 논문에서 제안한 방법으로써 실험한 결과 복잡한 영상에서 전방 및 후방 차량영상으로부터 번호판 인식이 가능하였으며 각각 $98.8\%$$95.5\%$의 추출률과 분할된 문자영역에서 $97.3\%$$96\%$의 인식률 개선 결과를 나타내었다.

  • PDF

기울어진 번호판을 포함한 효율적인 번호판인식 (Efficient License Plate Recognition Method for Inclined Plates)

  • 남기환;배철수
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.833-838
    • /
    • 2003
  • 차량의 수가 급격히 증가함에 따라 보다 지능적인 번호판 자동인식체계가 요구된다. 따라서 본 논문은 주행하는 차량에서 기울어진 번호판을 포함한 효율적인 자동차 번호판 인식방법을 제안하였다. 실험결과로서 일반적인 환경에서 획득된 인식 비율은 약 99%의 높은 성공률을 나타내었으며, 번호판이 차량에 비례하여 많이 기울어지게 위치해 있을 경우에도 97%의 성공률을 나타내었다. 논문에서는 CCD 카메라를 통해 전송되는 영상 시퀀스를 대상으로 움직이는 물체의 형태가 보행중인 사람, 혹은 자동차인지를 식별하고 이의 이동 방향을 판단하여, 이를 추적하는 무인 감시 시스템을 위한 효율적인 알고리즘을 제안한다.

휴대단말기 영상에서의 기하학적 정보를 이용한 차량 번호판 인식 (Recognition of Car License Plate Using Geometric Information from Portable Device Image)

  • 염희정;은성종;황보택근
    • 한국콘텐츠학회논문지
    • /
    • 제10권10호
    • /
    • pp.1-8
    • /
    • 2010
  • 현재 카메라로 입력된 문자 영상 처리를 위한 기술 개발이 국내외에서 활발히 이루어지고 있으나 낮은 정확도나 처리시간이 많이 걸리는 문제점 등으로 실용화 비율은 현저히 낮다. 본 논문에서는 휴대단말기 카메라에서 얻은 영상으로 기하학적 정보를 이용한 차량 번호판 인식 방법을 제안한다. 휴대폰 영상의 낮은 해상도와 부족한 명암대비, 각도 차이 등을 고려한 전처리 작업 수행 후 투영에지 누적 계산을 통해 추출된 번호판 영역에서 체인코드와 Thickness 정보를 이용하여 문자를 인식한다. 제안된 알고리즘은 기존의 차량 번호판 인식 알고리즘의 문제점과 휴대단말기 영상 처리라는 점 등을 고려하여 가볍고 처리 시간을 단축시켰으며, 실험 결과 95%의 문자 인식 성공률을 얻었다. 향후 연구로 원거리 영상이나 모션블러가 가미된 영상에서의 번호판 인식 알고리즘을 모색할 예정이다.

차량후면부 차량특징정보 검출을 통한 차량정보인식 및 자동과금시스템 (Vehicle Information Recognition and Electronic Toll Collection System with Detection of Vehicle feature Information in the Rear-Side of Vehicle)

  • 이응주
    • 한국멀티미디어학회논문지
    • /
    • 제7권1호
    • /
    • pp.35-43
    • /
    • 2004
  • 본 논문에서는 고속도로나 도심 진입 차량의 무인 자동과금 및 주요시설 출입 차량의 통제와 관리를 위하여 차량번호판 인식뿐만 아니라 차량 표시 문자와 제조사 식별자 검출 분류하여 차량의 정보를 판독하는 차량정보인식 및 자동과금시스템을 제안하였다. 제안한 알고리즘은 차량 후면부에서 획득된 영상으로부터 잡음제거, 세선화 등의 전처리 과정을 수행하고 템플릿 마스킹 및 레이블링 연산처리를 수행하여 차량표시문자, 제조사 표식자 및 번호판 영역을 각각 검출하였다. 또한, 검출된 특징 영역으로부터 특징자의 구조적 특징 및 패턴정보를 이용하여 표시문자와 제조사 표식자를 분류하였고, 하이브리드 패턴벡터와 세븐세그먼트 패턴벡터를 사용하여 차량번호판의 문자 및 숫자를 각각 인식하였다. 실험에서는 실제 고속도로상에서 제안한 차량인식 시스템에서 획득된 실 영상을 사용하여 인식 성능을 수행하였다. 실험 결과 제안한 알고리즘이 잡음, 외부환경, 차량의 크기에 무관하게 차량 특징자를 정확히 검출 분류하였으며 제안한 시스템은 범죄차량 단속, 차량자동과금 및 관공서 등의 차량입출력 관리의 무인화에 적용이 가능하다.

  • PDF

색 분해법과 역전파 신경 회로망을 이용한 차량 번호판 인식 (Recognition of Vehicle Number Plate Using Color Decomposition Method and Back Propagation Neural Network)

  • 이재수;김수인;서춘원
    • 전자공학회논문지T
    • /
    • 제35T권3호
    • /
    • pp.46-52
    • /
    • 1998
  • 본 논문에서는 차량에 부착된 번호 판을 컴퓨터에 입력한 후 이를 색 분해법과 역전파 신경망을 이용하여 자동차 번호를 고속으로 추출할 수 있는 방법을 제시하였다. 칼라 비디오 카메라에 의해 컴퓨터에 입력되는 자동차의 동화상을 R, G, B 신호로 분리한 후 승용차의 번호판 색상을 이용하여 R, G ,B의 각 농도에 맞는 임계치를 설정하여 2치화 시켜 번호판 영역을 추출한 후에 2 치화된 이 화상 신호를 프레임 버퍼에 기록하여 컴퓨터의 화상 데이터로 입력시켰다. 그리고 문자 인식 알고리즘을 적용한 후 문자 인식을 개선시키기 위해 역전파 신경 회로망을 적용하여 차랑 번호판 인식 시스템을 구현하였다. 또한 주변의 유사 색상의 존재로 인한 흔돈을 극소화시키기 위해 차량 번호판의 직사각형 구조를 이용하여 수평.수직선 추출 알고리즘을 사용하였으며 실험 결과 고속으로 차량 번호판 추출 및 인식이 가능함을 보였다.

  • PDF

개선된 퍼지 ART 알고리즘을 이용한 차량 번호판 인식에 관한 연구 (A Study on the Recognition of Car Plate using an Enhanced Fuzzy ART Algorithm)

  • 임은경;김광백
    • 한국멀티미디어학회논문지
    • /
    • 제3권5호
    • /
    • pp.433-444
    • /
    • 2000
  • 본 논문은 개선된 퍼지 ART알고리즘을 이용한 차량 번호판 인식에 대한 연구이다. 차량 영상에서 번호판 영역을 추출하기 위해 수평·수직 에지의 형태학적 정보를 이용하고, 추출된 번호판에서 문자를 포함하는 특징 영역을 추출하기 위해 SOFM을 적용한 윤곽선(Contour)추적 알고리즘을 이용한다. 추출된 특징 영역의 인식은 개선된 퍼지 ART알고리즘을 사용한다. 본 논문에서 제안한 퍼지 ART알고리즘은 클러스터링 하는데 있어서 임의의 패턴과 저장된 패턴사이의 불일치 허용도를 나타내는 유사도(vigilance threshold)를 동적으로 설정함으로써 기존의 퍼지 ART 알고리즘을 개선한다. 추출 실험 결과, 수평·수직 에지의 형태학적 정보를 이용한 추출 방법이 RGB와 HSI 컬러 정보를 이용한 추출 방법보다 추출율이 개선되었다. 인식 결과에서도 개선된 퍼지 ART알고리즘이 기존의 퍼지 ART 알고리즘과 SOFM 알고리즘보다 인식율이 향상되었다.

  • PDF