• Title/Summary/Keyword: 차량 검출기

Search Result 98, Processing Time 0.02 seconds

UWB Automobile Short Range Radar Receivers Performance In a Log-Normal Clutter Background (Log-Normal Clutter 환경에서 차량용 UWB 단거리 레이더 수신기의 성능분석)

  • Kumaravelu, Nandeeshkumar;Ko, Seok-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.59-64
    • /
    • 2011
  • Ultra wideband radars attract considerable attention as a short range automotive radar because of its high range resolution. Radar signal reflected from a target often contains unwanted echoes called as clutter, so the detection of target is difficult due to clutter echoes. Therefore, it is important to investigate the radar detector for better detecting from the reflected signals. In this paper, the optimal detector is obtained for various mean and variance value in log-normal clutter environment. The types of non-coherent detectors used are square law detector, linear detector, and logarithmic detector. The performances of detectors are compared in log normal clutter environment and the suitable detector is determined for automotive short range radar application.

The performance evaluation of car license plate edge detection by various edge detectors (다양한 에지 검출기에 의한 차량 번호판의 에지 검출 성능 평가)

  • Lee, Seok-Hee;Song, Young-Jun;Ahn, Jae-Hyeong
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.773-776
    • /
    • 2004
  • 본 논문에서는 에지 검출기에 의해 다양한 명암이 존재하는 차량 번호판 영역의 사각형 에지를 검출시 사용되는 소벨 및 Prewitt, Roberts, 가우시안의 라플라시안, 그리고 Canny 검출기를 사용하여 처리 속도와 에지 검출의 정확성을 실험하여 각 연산자의 성능을 평가하였다. 기존의 Sobel 에지 검출기는 적응적 임계값을 구하지 않으면 다양한 조명의 영향에 강인하지 못하다. 또한 Canny 에지 검출기는 조명의 영향에 강인하기는 하나, 계산량이 Sobel 보다는 많아 처리 속도가 느리다. 색상에 의해 번호판 후보 영역을 추출한 후 에지 검출기 번호판 내의 명암이 둘 이상으로 차량 번호판 영역에 대해서, 다양한 에지 검출기를 적용하여 속도와 에지 검출 성능을 비교 평가하고자 한다.

  • PDF

Real-Time Side-Rear Vehicle Detection Algorithm for Blind Spot Warning Systems (사각지역경보시스템을 위한 실시간 측후방 차량검출 알고리즘)

  • Kang, Hyunwoo;Baek, Jang Woon;Han, Byung-Gil;Chung, Yoonsu
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.7
    • /
    • pp.408-416
    • /
    • 2017
  • This paper proposes a real-time side-rear vehicle detection algorithm that detects vehicles quickly and accurately in blind spot areas when driving. The proposed algorithm uses a cascade classifier created by AdaBoost Learning using the MCT (modified census transformation) feature vector. Using this classifier, the smaller the detection window, the faster the processing speed of the MCT classifier, and the larger the detection window, the greater the accuracy of the MCT classifier. By considering these characteristics, the proposed algorithm uses two classifiers with different detection window sizes. The first classifier quickly generates candidates with a small detection window. The second classifier accurately verifies the generated candidates with a large detection window. Furthermore, the vehicle classifier and the wheel classifier are simultaneously used to effectively detect a vehicle entering the blind spot area, along with an adjacent vehicle in the blind spot area.

Fast On-Road Vehicle Detection Using Reduced Multivariate Polynomial Classifier (축소 다변수 다항식 분류기를 이용한 고속 차량 검출 방법)

  • Kim, Joong-Rock;Yu, Sun-Jin;Toh, Kar-Ann;Kim, Do-Hoon;Lee, Sang-Youn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.639-647
    • /
    • 2012
  • Vision-based on-road vehicle detection is one of the key techniques in automotive driver assistance systems. However, due to the huge within-class variability in vehicle appearance and environmental changes, it remains a challenging task to develop an accurate and reliable detection system. In general, a vehicle detection system consists of two steps. The candidate locations of vehicles are found in the Hypothesis Generation (HG) step, and the detected locations in the HG step are verified in the Hypothesis Verification (HV) step. Since the final decision is made in the HV step, the HV step is crucial for accurate detection. In this paper, we propose using a reduced multivariate polynomial pattern classifier (RM) for the HV step. Our experimental results show that the RM classifier outperforms the well-known Support Vector Machine (SVM) classifier, particularly in terms of the fast decision speed, which is suitable for real-time implementation.

Fast Vehicle Detection based on Haarlike and Vehicle Tracking using SURF Method (Haarlike 기반의 고속 차량 검출과 SURF를 이용한 차량 추적 알고리즘)

  • Yu, Jae-Hyoung;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • This paper proposes vehicle detection and tracking algorithm using a CCD camera. The proposed algorithm uses Haar-like wavelet edge detector to detect features of vehicle and estimates vehicle's location using calibration information of an image. After that, extract accumulated vehicle information in continuous k images to improve reliability. Finally, obtained vehicle region becomes a template image to find same object in the next continuous image using SURF(Speeded Up Robust Features). The template image is updated in the every frame. In order to reduce SURF processing time, ROI(Region of Interesting) region is limited on expended area of detected vehicle location in the previous frame image. This algorithm repeats detection and tracking progress until no corresponding points are found. The experimental result shows efficiency of proposed algorithm using images obtained on the road.

Passing Vehicle Detection using Local Binary Pattern Histogram (국부이진패턴 히스토그램을 이용한 측면 차량 검출)

  • Kang, Hyung-Sub;Cho, Dong-Chan;Ko, Kyung-Woo;Kim, Whoi-Yul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.260-263
    • /
    • 2010
  • 본 논문에서는 주행 중인 차량에서 전방을 향해 장착된 카메라를 통해 입력된 영상에서 측면에 부분적으로 나타나는 차량을 검출하는 방법을 제안한다. 기존 연구에서는 모션 벡터를 이용하여 주변 배경과 관측되는 차량 사이의 모션 벡터 차이를 이용하여 측면 차량을 검출하고 있다. 그러나 모션 벡터를 이용할 경우 정지된 차량이나 전방에서 다가오는 차량의 경우 검출하기 어려운 점이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 모션 벡터를 사용하지 않고 차량 측면 모습에서 특징 정보를 추출하여 SVM 분류기를 통해 측면 차량을 검출하는 방법을 제안한다. 차량 측면 모습의 특징을 뽑기 위해 영상의 밝기 변화에 강인한 국부 이진 패턴을 사용하였고 ROI영역 내에서 차량이 나타나는 위치에 상관없이 차량의 측면 모습을 찾아내기 위해 국부 이진 패턴의 히스토그램을 이용하였다. 실험결과에서는 제안하는 방법이 정지된 차량을 포함하여 88.5%의 정확도로 측면 차량을 검출하는 것을 확인하였다.

  • PDF

Vision-Based Vehicle Detection and Tracking Using Online Learning (온라인 학습을 이용한 비전 기반의 차량 검출 및 추적)

  • Gil, Sung-Ho;Kim, Gyeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.1-11
    • /
    • 2014
  • In this paper we propose a system for vehicle detection and tracking which has the ability to learn on-line appearance changes of vehicles being tracked. The proposed system uses feature-based tracking method to estimate rapidly and robustly the motion of the newly detected vehicles between consecutive frames. Simultaneously, the system trains an online vehicle detector for the tracked vehicles. If the tracker fails, it is re-initialized by the detection of the online vehicle detector. An improved vehicle appearance model update rule is presented to increase a tracking performance and a speed of the proposed system. Performance of the proposed system is evaluated on the dataset acquired on various driving environment. In particular, the experimental results proved that the performance of the vehicle tracking is significantly improved under bad conditions such as entering a tunnel and passing rain.

적응적 고차상관 처리를 이용한 차량의 주행궤적 검출계

  • 장경영;오재응
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.169-173
    • /
    • 2001
  • 무인 운반차 등의 주행괘적을 검출하기 위해서는, 일반적으로 순간적인 주행속도와 진행방향을 축차적으로 검출하여 이로부터 궤적을 측정하는 방법이 이용되어져 왔으며, 이를 위하여 종래에는 타코미터, 2차 상관법, 공간 필터법 등과 같은 속도 계측 수단과 스티어링 각도 검출기, 자이로등의 회전각 검출 수단을 병용하여야 했다. 본 논문에서는 복수개의 광 선 검출기 군과 이에 대응하는 고차의 상관처리를 이용한 단일계로서 차량의 임의의 궤적을 원호로 근사하여 검출함으로써 곡선 궤적인 경우에도 고정도의 궤적추정이 가능한 새로운 계측법을 제안한다.

A Scheme of Extracting Forward Vehicle Area Using the Acquired Lane and Road Area Information (차선과 도로영역 정보를 이용한 전방 차량 영역의 추출 기법)

  • Yu, Jae-Hyung;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.797-807
    • /
    • 2008
  • This paper proposes a new algorithm of extracting forward vehicle areas using the acquired lanes and road area information on road images with complex background to improve the efficiency of the vehicle detection. In the first stage, lanes are detected by taking into account the connectivity among the edges which are determined from a method of chain code. Once the lanes proceeding to the same direction with the running vehicle are detected, neighborhood roadways are found from the width and vanishing point of the acquired roadway of the running vehicle. And finally, vehicle areas, where forward vehicles are located on the road area including the center and neighborhood roadways, are extracted. Therefore, the proposed scheme of extracting forward vehicle area improves the rate of vehicle detection on the road images with complex background, and is highly efficient because of detecting vehicles within the confines of the acquired vehicle area. The superiority of the proposed algorithm is verified from experiments of the vehicle detection on road images with complex background.

Vehicle Detection based on the Haar-like feature and Image Segmentation (영상분할 및 Haar-like 특징 기반 자동차 검출)

  • Choi, Mi-Soon;Lee, Jeong-Hwan;Suk, Jung-Hee;Roh, Tae-Moon;Shim, Jae-Chang
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1314-1321
    • /
    • 2010
  • In this paper, we study about the vehicle detection algorithm which is in the process of travelling from the road. An input image is segmented by means of split and merge algorithm. And two largest segmented regions are removed for reducing search region and speed up processing time. In order to detect the back side of the front vehicle considers a vertical/horizontal component, uses an integral image with to apply Haar-like methods which are the possibility of shortening a calculation time, classified with SVM. The simulation result of the method which is proposed appeared highly.