• Title/Summary/Keyword: 차량 간 이동 네트워크

Search Result 106, Processing Time 0.024 seconds

Study On Generating Compact Network RTK Corrections Considering Ambiguity Level Adjustment Among Reference Station Networks for Constructing Infrastructure of Land Vehicle (육상교통 인프라 구축을 위한 다중 네트워크 간 미지정수 수준 조정이 고려된 Compact Network PTK 보정정보 생성기법 연구)

  • Song, June-Sol;Park, Byung-Woon;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.4
    • /
    • pp.404-412
    • /
    • 2013
  • Network RTK is widely used especially for static applications so far, however, the demand for high accuracy positioning for kinetic users such as land vehicles is growing for safety and convenience reasons. Kinematic users move along the roads and the network where they receive corrections can be changed. Compact Network RTK corrections should keep consistency while network change. In this paper, we introduced a method of generating Compact Network RTK corrections considering network ambiguity level adjustment by formulation of corrections. We verified the proposed method for reference station networks across whole country. We also generated Compact Network RTK corrections using simulation and real GPS data from reference stations in South Korea and evaluated performance of users. As a result, the discontinuity between corrections from two networks reduced to 0.25 cycle from several cycles. And user could achieve less than 8 cm (2DRMS) horizontal position accuracy continuously regardless of network change.

UAV-MEC Offloading and Migration Decision Algorithm for Load Balancing in Vehicular Edge Computing Network (차량 엣지 컴퓨팅 네트워크에서 로드 밸런싱을 위한 UAV-MEC 오프로딩 및 마이그레이션 결정 알고리즘)

  • A Young, Shin;Yujin, Lim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.12
    • /
    • pp.437-444
    • /
    • 2022
  • Recently, research on mobile edge services has been conducted to handle computationally intensive and latency-sensitive tasks occurring in wireless networks. However, MEC, which is fixed on the ground, cannot flexibly cope with situations where task processing requests increase sharply, such as commuting time. To solve this problem, a technology that provides edge services using UAVs (Unmanned Aerial Vehicles) has emerged. Unlike ground MEC servers, UAVs have limited battery capacity, so it is necessary to optimize energy efficiency through load balancing between UAV MEC servers. Therefore, in this paper, we propose a load balancing technique with consideration of the energy state of UAVs and the mobility of vehicles. The proposed technique is composed of task offloading scheme using genetic algorithm and task migration scheme using Q-learning. To evaluate the performance of the proposed technique, experiments were conducted with varying mobility speed and number of vehicles, and performance was analyzed in terms of load variance, energy consumption, communication overhead, and delay constraint satisfaction rate.

Design of V2I Based Vehicle Identification number In a VANET Environment (VANET 환경에서 차대번호를 활용한 V2I기반의 통신 프로토콜 설계)

  • Lee, Joo-Kwan;Park, Byeong-Il;Park, Jae-Pyo;Jun, Mun-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7292-7301
    • /
    • 2014
  • With the development of IT Info-Communications technology, the vehicle with a combination of wireless-communication technology has resulted in significant research into the convergence of the component of existing traffic with information, electronics and communication technology. Intelligent Vehicle Communication is a Machine-to-Machine (M2M) concept of the Vehicle-to-Vehicle. The Vehicle-to-Infrastructure communication consists of safety and the ease of transportation. Security technologies must precede the effective Intelligent Vehicle Communication Structure, unlike the existing internet environment, where high-speed vehicle communication is with the security threats of a wireless communication environment and can receive unusual vehicle messages. In this paper, the Vehicle Identification number between the V2I and the secure message communication protocol was proposed using hash functions and a time stamp, and the validity of the vehicle was assessed. The proposed system was the performance evaluation section compared to the conventional technique at a rate VPKI aspect showed an approximate 44% reduction. The safety, including authentication, confidentiality, and privacy threats, were analyzed.

Security of Ethernet in Automotive Electric/Electronic Architectures (차량 전자/전기 아키텍쳐에 이더넷 적용을 위한 보안 기술에 대한 연구)

  • Lee, Ho-Yong;Lee, Dong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.39-48
    • /
    • 2016
  • One of the major trends of automotive networking architecture is the introduction of automotive Ethernet. Ethernet is already used in single automotive applications (e.g. to connect high-data-rate sources as video cameras), it is expected that the ongoing standardization at IEEE (IEEE802.3bw - 100BASE-T1, respectively IEEE P802.3bp - 1000BASE-T1) will lead to a much broader adoption in future. Those applications will not be limited to simple point-to-point connections, but may affect Electric/Electronic(EE) Architectures as a whole. It is agreed that IP based traffic via Ethernet could be secured by application of well-established IP security protocols (e.g., IPSec, TLS) combined with additional components like, e.g., automotive firewall or IDS. In the case of safety and real-time related applications on resource constraint devices, the IP based communication is not the favorite option to be used with complicated and performance demanding TLS or IPSec. Those applications will be foreseeable incorporate Layer-2 based communication protocols as, e.g., currently standardized at IEEE[13]. The present paper reflects the state-of-the-art communication concepts with respect to security and identifies architectural challenges and potential solutions for future Ethernet Switch-based EE-Architectures. It also gives an overview and provide insights into the ongoing security relevant standardization activities concerning automotive Ethernet. Furthermore, the properties of non-automotive Ethernet security mechanisms as, e.g., IEEE 802.1AE aka. MACsec or 802.1X Port-based Network Access Control, will be evaluated and the applicability for automotive applications will be assessed.

A Secure Mobile Message Authentication Over VANET (VANET 상에서의 이동성을 고려한 안전한 메시지 인증기법)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1087-1096
    • /
    • 2011
  • Vehicular Ad Hoc Network(VANET) using wireless network is offering the communications between vehicle and vehicle(V2V) or vehicle and infrastructure(V2I). VANET is being actively researched from industry field and university because of the rapid developments of the industry and vehicular automation. Information, collected from VANET, of velocity, acceleration, condition of road and environments provides various services related with safe drive to the drivers, so security over network is the inevitable factor. For the secure message authentication, a number of authentication proposals have been proposed. Among of them, a scheme, proposed by Jung, applying database search algorithm, Bloom filter, to RAISE scheme, is efficient authentication algorithm in a dense space. However, k-anonymity used for obtaining the accurate vehicular identification in the paper has a weak point. Whenever requesting the righteous identification, all hash value of messages are calculated. For this reason, as the number of car increases, a amount of hash operation increases exponentially. Moreover the paper does not provide a complete key exchange algorithm while the hand-over operation. In this paper, we use a Received Signal Strength Indicator(RSSI) based velocity and distance estimation algorithm to localize the identification and provide the secure and efficient algorithm in which the problem of hand-over algorithm is corrected.

U-Bus Advertisement Business Model and System Implementation based on Wireless Networks (무선망 기반의 U-버스광고 비즈니스 모델 및 시스템 구축 방안)

  • Roh, Su-Sung;Kim, Do-Nyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.88-97
    • /
    • 2010
  • Recently the more convenient services are provided to people in the city in line with the change of city paradigm and the recent development of ubiquitous. For example, Information on bus arrivals an effective advertisement the combination of high technology and departures through smart-phones. However, in respect of the mobile advertisement, because of difficulties such as the means of transferring the mass storage data or the burden of communication charges. there need means to improve such difficulties. This study has been conducted aiming to overcome such difficulties. This study suggests the strategic differentiation plan through the analysis of the media characteristics such as real time service information when in traveling, U-Bus business model in the category of mobile advertisement, etc. and also the concrete system establishment plan from the operation center via network to the delivery of the advertisement through vehicle terminals. In respect that this study suggests the implications as a practical business model through the fusion of high technology and diverse media. It has great significance.

A Servey on TCP Performance Enhancement in VANET (VANET에서의 TCP 성능 향상에 관한 서베이)

  • Kim, Gwanghyeon;Lee, Sungwon;Kim, Dongkyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.323-326
    • /
    • 2013
  • 최근 지능형 교통 시스템 (ITS) 에 대한 관심이 증가함에 따라 ITS 응용을 지원해 줄 수 있는 차량 에드혹 네트워크 (VANET, Vehicular Ad-Hoc Network) 기술이 주요 이슈로 대두되고 있다. 특히 트랜스포트 계층에서는 종단간 신뢰성이 요구되는 ITS 응용들을 지원하기 위해 TCP를 적용할 필요가 있다. 하지만 VANET 환경에서 TCP는 혼잡 제어 기능의 오동작, 이동성에 의한 경로 재설정 오버헤드, 경쟁(contention) 등으로 인해 throughput을 불필요하게 감소시킬 수 있다. 따라서 VANET 환경에서 TCP 성능을 향상시킬 수 있는 다양한 기법들에 대한 연구가 진행되고 있다. 본 논문에서는 이러한 기법들을 크게 혼잡 탐색 기법, cross-layer 기법으로 나누어 대표적인 두 가지 기법들을 각각 비교, 분석한다.

CAN 네트워크에서의 악의적인 ECU 식별 기술 연구 동향

  • Seyoung Lee;Wonsuk Choi;Dong Hoon Lee
    • Review of KIISC
    • /
    • v.33 no.4
    • /
    • pp.47-55
    • /
    • 2023
  • 자동차 산업에서 전자제어장치 (Electronic Controller Unit, ECU)를 활용한 혁신으로 운전자들은 안전하고 편리한 운전경험을 누리고 있다. 그러나 이와 동시에, 차량 내부 ECU 간의 통신을 지원하는 CAN (Controller Area Network)을 대상으로 한 악의적인 침입과 사이버 공격의 위협 역시 증가하고 있다. 이러한 문제에 대응하기 위해 많은 연구가 진행 중이며, 특히 자동차 침입 탐지 시스템 (Intrusion Detection System, IDS)의 발전이 주목받고 있다. 그러나 대부분의 IDS는 주로 공격을 탐지하는 데 집중되어 있으며, 실제 악의적인 메시지를 전송한 ECU를 정확히 식별하는 데에는 한계점이 있다. 악의적인 ECU를 식별하는 기술은 공격 ECU를 격리시키거나 펌웨어 업데이트 등의 보안 패치를 적용하는데 필수적인 기술이다. 본 고에서는 현재까지 제안된 CAN에서의 악의적인 ECU를 식별하기 위한 기술들에 대해 살펴보고, 비교 분석 및 한계점에 대해 분석하고자 한다.

VANET Privacy Assurance Architecture Design (VANET 프라이버시 보장 아키텍처 설계)

  • Park, Su-min;Hong, Man-pyo;Shon, Tae-shik;Kwak, Jin
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.81-91
    • /
    • 2016
  • VANET is one of the most developed technologies many people have considered a technology for the next generation. It basically utilizes the wireless technology and it can be used for measuring the speed of the vehicle, the location and even traffic control. With sharing those information, VANET can offer Cooperative ITS which can make a solution for a variety of traffic issues. In this way, safety for drivers, efficiency and mobility can be increased with VANET but data between vehicles or between vehicle and infrastructure are included with private information. Therefore alternatives are necessary to secure privacy. If there is no alternative for privacy, it can not only cause some problems about identification information but also it allows attackers to get location tracking and makes a target. Besides, people's lives or property can be dangerous because of sending wrong information or forgery. In addition to this, it is possible to be information stealing by attacker's impersonation or private information exposure through eavesdropping in communication environment. Therefore, in this paper we propose Privacy Assurance Architecture for VANET to ensure privacy from these threats.

Efficient Tracking System for Passengers with the Detection Algorithm of a Stopping Vehicle (차량정차감지 알고리즘을 이용한 탑승자의 효율적 위치추적시스템)

  • Lee, Byung-Mun;Shin, Hyun-Ho;Kang, Un-Gu
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.73-82
    • /
    • 2011
  • The location-based service is emerging again to the public attention. The location recognition environment up-to-now has been studied with its focus only on a person, an object or a moving object. However, this study proposes a location recognition model that serves to recognize and track, in real time, multiple passengers in a moving vehicle. Identifying the locations of passengers can be classified into two classes: one is to use the high price terminal with GPS function, and the other is to use the economic price compact terminal without GPS function. Our model enables the simple compact terminal to provide effective location recognition under the on-boarding situation by transmitting messages through an interface device and sensor networks for a vehicle equipped with GPS. This technology reduces transmission traffic after detecting the condition of a vehicle (being parked or running), because it does not require transmission/receiving of information on the locations of passengers who are confined in a vehicle when the vehicle is running. Also it extends battery life by saving power consumption of the compact terminal. Hence, we carried out experiments to verify its serviceability by materializing the efficient tracking system for passengers with the detection algorithm of a stopping vehicle proposed in this study. Moreover, about 200 experiments using the system designed with this technology proved successful recognition on on-boarding and alighting of passengers with the maximum transmission distance of 12 km. In addition to this, the running recognition tests showed the test with the detection algorithm of a stopping vehicle has reduced transmission traffic by 41.6% compared to the algorithm without our model.