• Title/Summary/Keyword: 차량진동하중

Search Result 96, Processing Time 0.027 seconds

다층 구조를 갖는 벨로우즈의 등가 모델링에 관한 연구

  • 정태진;김병곤;조원용;유중근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.61-61
    • /
    • 2004
  • 벨로우즈는 차량의 배기계나 공장의 덕트 등에 진동 절연을 목적으로 장착되는 부품으로서 제품의 특성상 진동 하중을 많이 받기 때문에 여러 겹으로 설계하는 경우가 많다 또한, 대부분의 제품이 그러하듯이 유한요소해석을 적용하여 제품의 특성을 조기에 평가함으로써 개발의 효율성을 높일 수 있다. 그러나, 여러 겹으로 되어있는 제품의 특성을 그대로 모델링 하였을 때는 유한요소의 수가 지나치게 증가하는 경향이 있기 때문에 해석을 수행하기 어렵다.(중략)

  • PDF

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

Lightweight Design for Front Knuckle of Solar-Powered Vehicle using Topology Optimization (위상최적화를 이용한 태양광 자동차 프론트 너클의 경량화 설계)

  • Jeong, DaeYoung;Lee, JunYoung;Kim, MoonYoung;Yim, HongJae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.594-597
    • /
    • 2014
  • 본 논문에서는 국제 태양광 자동차 대회를 참가하는 태양광 자동차 프론트 너클의 경량화 설계에 관한 연구를 진행한다. 이를 위해 Cattle grid 를 포함한 실제 주행환경과 태양광 자동차를 동역학 시뮬레이션 모델로 구성하고 대회에서 차량의 평균속도인 70Km/h 로 주행 시, 서스펜션에서 발생되는 동하중을 측정하였다. 프론트 너클을 유한요소로 구성하고 다물체 동역학 시뮬레이션에서 도출된 하중들로 위상최적기법을 통해 프론트 너클의 경량화를 이루었다. 마지막으로 피로해석을 수행하여 그 타당성을 검증하였다.

  • PDF

Phenomenological Model for Vibration Control of Booms on Articulated Bridge Inspection Robots (교량검사 굴절로봇 붐의 진동제어를 위한 수치모델에 관한 연구)

  • Shin, Ki-Bum;Lee, Hu-Seok;Hwang, In-Ho;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.536-539
    • /
    • 2009
  • BIRDI(Bridge Inspection Robot Development Interface)에서 현재 개발된 첨단굴절로봇차는 비전 시스템과 로봇 플랫폼을 붐에 장착하여 교량 하부를 점검하는 점검용차량이다. 본 연구에서는 첨단굴절로봇차의 포스트 붐에 엑츄에이터를 장착하여 강풍 등으로 발생이 예상되는 유해 진동을 제어할 수 있는 시스템을 제안하였으며, 성능 평가를 위해 수치적 연구를 수행하였다. 제안된 제어시스템의 수치적 연구를 위해 현재 제작된 포스트 붐과 작업 붐의 제원을 이용하여 모델링 하였으며, 적절한 주파수 특성을 가진 하중을 가정하였으며, 최적 제어이론인 PD제어기법인 피드백 제어기법을 적용하여 수치해석을 수행 하였다. 수치해석 결과, 제안된 제어시스템은 L형 붐에 발생되는 유해 진동을 저감시킴을 확인하였다. 본 연구를 통해 제안된 시스템의 진동제어 성능을 입증하였으며, 실제 첨단굴절로봇차에 적용될 경우 점검 시스템의 성능을 향상시킬 수 있을 것으로 사료된다.

  • PDF

Analysis of Performance Tests and Friction Characteristics of a Friction Type Isolator Considering Train Load Conditions (열차 하중조건을 고려한 마찰형 방진장치 성능시험 및 마찰특성 분석)

  • Koh, Yong-Sung;Lee, Chan-Young;Ji, Yong-Soo;Kim, Jae-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.694-702
    • /
    • 2017
  • In the case of an elevated railway station, structure borne noise and vibration due to structural limitations allow the load and vibration from railway vehicles to be directly transmitted to the station structure, resulting in an increase in the number of civil complaints from customers and staff of the station. The floating slab track system, which is well known as one of the solutions for reducing the noise and vibration from elevated railway stations, usually contains rubber mounts or rubber pads under the railway slab which act as a damper. These types of device have the disadvantage that is difficult to predetermine the exact stiffness and damping ratio under the nonlinear loads resulting from train services. In this study, an isolator with a friction type of wedge is introduced, which can be applied to floating slab track systems and to be designed with precisely the required stiffness. Furthermore, a comparative analysis of the stiffness between the designed and experimental values is carried out, while the damping ratio, which is closely related to the friction wedge blocks, is deduced according to the train load condition. The performance tests of the isolator were conducted in accordance with the DIN 45673-7 standard which includes both static and dynamic load tests. The load conditions for the performance tests are designed to conform to the DIN standard related to the weight of the train and rail track, in order to perform vertical and horizontal load tests, so as to ensure the secure structural safety of the railway. Also, by checking the change aspect of the friction coefficients of the friction elements according to the loading rate, the vibration reduction performance of the friction type isolator with variable loading rate conditions is examined.

Stress Distribution of Buried Gas Transportation Pipeline According to Vehicle Load Velocity (지중 가스 수송 강관의 차량 이동 속도에 따른 응력 분포 특성)

  • Won, Jong-Hwa;Kim, Moon-Kyum;Yoo, Han-Kyu; Kim, Mi-Seoung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • In order to estimate the integrity and identify the dynamic characteristics of buried gas pipelines subjected to vehicle loads, FE analysis is performed based on the 'Highway and Local Road Design Criteria' and the 'KOGAS Guideline for Pipeline Management'. The FE model describes the current burial condition of Korea properly, and the DB-24 load model is adopted for this research. This study considers a varying velocity in the range of $40{\sim}160\;km/h$ and $P_i=8$ MPa(internal pressure) with depth cover, Z=1.5 m. Maximum stress occurs at v=80 km/h and decreases after v=80 km/h. The maximum induced stress by DB-24 loads is about 10 MPa. Under the design pressure, however, the analysis results show that API 5L Gr. X65 pipelines have sufficient integrity to withstand the vibration of vehicle loads.

  • PDF

Dynamic Analysis of Cable-Stayed Bridge Subjected to Random Wind Forces (랜덤풍하중에 대한 사장교의 동력학적연구)

  • Hyun, Chang Hun;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.59-66
    • /
    • 1984
  • The dynamic behavior of a cable-stayed bridge due to random wind forces is investigated. The effects of the steady wind, the self-excited and the buffeting forces are studied. The dynamic analysis of the structure is carried out by the frequency domain method utilizing the mode superposition. Example analysis are performed for Dolsan Bridge, which is under construction at Yeosu, Jeonnam. Aerodynamic stability of the bridge is investigated and the vertical motion of the girder as well as the tension variations of the cables is obtained.

  • PDF

전산수치해석의 고속철도에의 활용

  • 이승원;양재성
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.54-59
    • /
    • 1996
  • 시속 300km로 주행하는 고속철도 열차의 주행안정성 및 승차감을 확보하기 위해서는 열차하중을 고려한 정교한 정적, 동적해석 및 설계가 이루어져야 한다. 따라서 차량과 궤도의 동적상호작용 및 차량과 교량의 동적상호작용, 터널의 미기압 및 공기압, 대단면 터널굴착의 안정성평가, 열차주행에 의한 지반진동의 예측 등에 전산수치해석기법의 활용 및 개발이 현재 활발히 이루어지고 있다. 그러나 고속철도 보유국을 포함한 선진국들에 비하면은 이러한 전산수치해석분야에 있어서 아직도 더 많은 연구 및 개발이 본 공단을 포함하여 학계 및 연구소에서 이루어져야 하겠으며, 본 경부고속철도 건설사업으로 인하여 차량, 전기시설분야의 각종 첨단기술개발 및 발전과 더불어 하부 토목구조물의 건설 및 설계 해석분야에 많은 발전이 기대된다 하겠다.

  • PDF

Study on the Dynamic Load Monitoring Using the Instrumented Vehicle (계측장치 실장 차량을 이용한 동적 하중 모니터링 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Kwon, Soon-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.95-107
    • /
    • 2016
  • The axle weight of a vehicle in motion can be measured with a low-speed or high-speed weigh-in-motion (WIM). However, the axial load dynamically change depending on the vehicle's characteristics-such as the chassis or axle structure-or the characteristics of the driving environment such as road flatness. The changes in dynamic load lead to differences between the vehicle's weight measured at rest and the vehicle's weight measured in motion. For this Study, an experiment was conducted with an instrumented vehicle to analyze the range of errors caused by uncontrollable environmental factors by identifying the characteristics of the dynamic load changes of a vehicle in motion, and determine the appropriate scale for the accuracy evaluation of a high-speed WIM, as a preparatory research for the introduction of unmanned overweight enforcement systems in the future. The key findings from the experiment are summarized as follows. First, The gross weight of the tested vehicle changed by approximately 1% at low velocities and approximately by 4% at high velocities, and the vehicle's axle weight changed by approximately 1-3%, at low velocities and by 2-9% at high velocities. A single axle showed larger weight changes than individual axles in a group. Secondly, The vehicle's gross weight and the axle weight on the impact section were up to eight times and three-to-twelve times higher, respectively, than its gross weight and the axle weight on the flat section. The vibration frequency of the vehicle's dynamic load was measured at between 2.4 and 5.8Hz, and found to return to the normal amplitude after moving approximately 30 meters.

Resonance Phenomenon according to the relationship between Span Length of the Bridge and Effective Beating Interval of High-Speed Train (교량의 지간장과 고속전철하중 유효타격간격 사이의 관계에 따른 공진현상)

  • 김성일;곽종원;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.67-76
    • /
    • 1999
  • Resonance of the bridge can be occurred with the coincidence between a natural frequency of the bridge and a crossing frequency of moving loads which is determined from the speed and effective beating interval of the vehicle. In case of the railway bridge, the effective beating interval of the vehicle is fixed under the passage of specific trains. In the present study, resonance and cancellation of the bridge subjected to moving high-speed train are analyzed with the variations of span length. A steel-concrete composite railway bridge is idealized by the combinations of plate elements and space frame elements. High-speed train is idealized with moving constant forces and a 3-dimensional full modelling. From analyzing dynamic responses of D.M.F of vertical displacement, maximum vertical acceleration of the slab, and end rotation according to the variations of span length of the bridge, design criteria of span length of the bridge which satisfies dynamic safety is discussed.

  • PDF