• Title/Summary/Keyword: 차량용 수소 탱크

Search Result 3, Processing Time 0.017 seconds

A Study on the Modeling of Fueling Hydrogen Tank in Vehicle Using Dispenser (디스펜서를 이용한 차량용 연료 탱크 수소 충전 모델링에 관한 연구)

  • Choi, Ji Ah;Ji, Sang Won;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.36-44
    • /
    • 2022
  • Hydrogen energy as an alternative source of energy has been receiving tremendous support around the world, and research is being actively conducted accordingly. However, most of the studies focus on hydrogen storage tanks and only are few studies on interpreting the hydrogen filling system itself. In this study, with reference to SAE J2601, a hydrogen fueling protocol, a simulation model was developed that can confirm the behavior of the vehicle's internal tank during hydrogen fueling. With respect to factors such as fuel supply temperature, ambient temperature, and pressure increase rate, the developed model can check the change of temperature and pressure in the tank and the state of hydrogen charging during hydrogen fueling. The validity of the developed simulation model was confirmed by comparing the simulation results with the experimental results presented in SAE J2601.

A Study on the Strength Safety of a Composite Hydrogen Fuel Tank for a Vehicle (차량용 복합소재 수소연료탱크의 강도안전성에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents the strength safety of a hydrogen gas composite fuel tank, which is analyzed using a FEM based on the criterion of US DOT-CFFC and Korean Standard. A hydrogen gas composite tank in which is fabricated by an aluminum liner of 6061-T6 material and carbon fiber wound composite layers of T800-24K is charged with a filling pressure of 70MPa and a gas storage capacity of 130 liter. The FEM results indicated that von Mises stress, 255.2MPa of an aluminum liner inner tank is low compared with that of 95% yield strength, 272MPa. And a carbon fiber stress ratio of a composite fuel tank is 3.11 in hoop direction and 3.04 in helical direction. These data indicate that a carbon fiber gas tank is safe in comparison to that of a recommended criterion of 2.4 stress ratio. Thus, the proposed composite tank with 130 liter capacity and 70MPa filling pressure is usable in strength safety.

An Experimental Study on the Explosion of Hydrogen Tank for Fuel-Cell Electric Vehicle in Semi-Closed Space (반밀폐공간에서 발생되는 차량용 수소연료탱크 폭발 실험)

  • Park, Jinouk;Yoo, Yongho;Kim, Hwiseong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.73-80
    • /
    • 2021
  • Recently, Korea has established a plan for the supply of hydrogen vehicles and is promoting the expansion of the supply. Risk factors for hydrogen vehicles are hydrogen leakage, jet fire, and explosion. Therefore Safety measures are necessary for this hazard. In addition, risks in semi-closed spaces such as tunnels, underground roads, and underground parking lots should be analyzed. In this study, an explosion experiment was conducted on a hydrogen tank used in a hydrogen vehicle to analyze the risk of a hydrogen vehicle explosion accident that may occur in a semi-closed space. As results, the effect on the structure and the human body was analyzed using the overpressure and impulse values for each distance generated during the explosion.