• Title/Summary/Keyword: 차량분류

Search Result 429, Processing Time 0.023 seconds

Detection of Car Hacking Using One Class Classifier (단일 클래스 분류기를 사용한 차량 해킹 탐지)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.33-38
    • /
    • 2018
  • In this study, we try to detect new attacks for vehicle by learning only one class. We use Car-Hacking dataset, an intrusion detection dataset, which is used to evaluate classification performance. The dataset are created by logging CAN (Controller Area Network) traffic through OBD-II port from a real vehicle. The dataset have four attack types. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve high efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data, which are new attacks. In this study, we use one class classifier to detect new attacks that are difficult to detect using signature-based rules on network intrusion detection system. The proposed method suggests a combination of parameters that detect all new attacks and show efficient classification performance for normal dataset.

Morphological Vehicle Classification Algorithm for Intelligent Transportation System (지능형 교통 시스템을 위한 형태학적 차량 분류 알고리즘)

  • 김기석
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2002
  • It is necessary to induce for using mass transit instead of passenger car, which is high occupied roadway. It is necessary to develop the automated enforcement system to do manage such things. There are lots of problems to enforce the exclusive roadway. One of the biggest problem is the difficulty of vehicle classification. In this paper, morphological vehicle classification algorithm is proposed. Vehicle object is separated from background using frame difference, then the proposed unique weighted skeleton feature is extracted. The experiments show that the vehicle identification results produced by weighted skeleton feature seem to be good quality.

  • PDF

The Vehicle Classification Using Chamfer Matching and the Vehicle Contour (차량의 윤곽선과 Chamfer Matching을 이용한 차량의 형태 분류)

  • Nam, Jin-Woo;Dewi, Primastuti;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.193-196
    • /
    • 2010
  • In this paper, we propose a method to classify the types of vehicle as full, medium, or small size. The proposed method is composed of three steps. First, after obtaining vehicle contour from template candidate image, edge distance template is created by distance transform of the vehicle's contour. Second, the vehicle type of input image is classified as the type of template which has minimal edge distance with input image. The edge distance value means the measurement of distance between input image and template at each pixel which is part of vehicle contour. Experimental results demonstrate that our method presented a good performance of 80% about test images.

  • PDF

Real-time Vehicle Recognition Mechanism using Support Vector Machines (SVM을 이용한 실시간 차량 인식 기법)

  • Chang, Jae-Khun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1160-1166
    • /
    • 2006
  • The information of vehicle is very important for maintaining traffic order under the present complex traffic environments. This paper proposes a new vehicle plate recognition mechanism that is essential to know the information of vehicle. The proposed method uses SVM which is excellent object classification compare to other methods. Two-class SVM is used to find the location of vehicle plate and multi-class SVM is used to recognize the characters in the plate. As a real-time processing system using multi-step image processing and recognition process this method recognizes several different vehicle plates. Through the experimental results of real environmental image and recognition using the proposed method, the performance is proven.

  • PDF

Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types (후미등 하단 학습기반의 차종에 무관한 전방 차량 검출 시스템)

  • Ki, Minsong;Kwak, Sooyeong;Byun, Hyeran
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.609-620
    • /
    • 2016
  • Recently, there are active studies on a forward collision warning system to prevent the accidents and improve convenience of drivers. For collision evasion, the vehicle detection system is required. In general, existing learning-based vehicle detection methods use the entire appearance of the vehicles from rear-view images, so that each vehicle types should be learned separately since they have distinct rear-view appearance regarding the types. To overcome such shortcoming, we learn Haar-like features from the lower part of the vehicles which contain tail lights to detect vehicles leveraging the fact that the lower part is consistent regardless of vehicle types. As a verification procedure, we detect tail lights to distinguish actual vehicles and non-vehicles. If candidates are too small to detect the tail lights, we use HOG(Histogram Of Gradient) feature and SVM(Support Vector Machine) classifier to reduce false alarms. The proposed forward vehicle detection method shows accuracy of 95% even in the complicated images with many buildings by the road, regardless of vehicle types.

BSR (Buzz, Squeak, Rattle) noise classification based on convolutional neural network with short-time Fourier transform noise-map (Short-time Fourier transform 소음맵을 이용한 컨볼루션 기반 BSR (Buzz, Squeak, Rattle) 소음 분류)

  • Bu, Seok-Jun;Moon, Se-Min;Cho, Sung-Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • There are three types of noise generated inside the vehicle: BSR (Buzz, Squeak, Rattle). In this paper, we propose a classifier that automatically classifies automotive BSR noise by using features extracted from deep convolutional neural networks. In the preprocessing process, the features of above three noises are represented as noise-map using STFT (Short-time Fourier Transform) algorithm. In order to cope with the problem that the position of the actual noise is unknown in the part of the generated noise map, the noise map is divided using the sliding window method. In this paper, internal parameter of the deep convolutional neural networks is visualized using the t-SNE (t-Stochastic Neighbor Embedding) algorithm, and the misclassified data is analyzed in a qualitative way. In order to analyze the classified data, the similarity of the noise type was quantified by SSIM (Structural Similarity Index) value, and it was found that the retractor tremble sound is most similar to the normal travel sound. The classifier of the proposed method compared with other classifiers of machine learning method recorded the highest classification accuracy (99.15 %).

Truck Classification System Using HOG Feature - based SVM (HOG 특징 기반 SVM 을 활용한 화물차 분류 시스템)

  • Kang, Keon-Woo;Kang, Suk-Ju
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.345-346
    • /
    • 2018
  • 차종 별 교통량 자료는 도로의 유지관리나 분석 등의 행정 처리 업무에 필요한 기본 자료임과 동시에 각종 연구에 활용된다. 본 시스템은 그 일환으로서 화물차나 일반차량을 구분하여 특정 도로의 화물차 비율이나 교통량을 파악하는데 활용할 수 있다. 머신 러닝 알고리즘 중에서 높은 성능을 보이는 Support Vector Machine (SVM) 알고리즘을 이용하여 도로 위의 일반차량과 화물차를 구분하였다. 우선, 화물차와 일반차량의 차이를 구분하고자 각각의 영상에 대해 Histogram of Oriented Gradients (HOG) 기반 특징점을 추출하고 이에 따라 1 차원 벡터로 표현된 데이터를 SVM 으로 분류하여 구분한다.

  • PDF

Vehicle Detection Method Based on Object-Based Point Cloud Analysis Using Vertical Elevation Data (OBPCA 기반의 수직단면 이용 차량 추출 기법)

  • Jeon, Junbeom;Lee, Heezin;Oh, Sangyoon;Lee, Minsu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.369-376
    • /
    • 2016
  • Among various vehicle extraction techniques, OBPCA (Object-Based Point Cloud Analysis) calculates features quickly by coarse-grained rectangles from top-view of the vehicle candidates. However, it uses only a top-view rectangle to detect a vehicle. Thus, it is hard to extract rectangular objects with similar size. For this reason, accuracy issue has raised on the OBPCA method which influences on DEM generation and traffic monitoring tasks. In this paper, we propose a novel method which uses the most distinguishing vertical elevations to calculate additional features. Our proposed method uses same features with top-view, determines new thresholds, and decides whether the candidate is vehicle or not. We compared the accuracy and execution time between original OBPCA and the proposed one. The experiment result shows that our method produces 6.61% increase of precision and 13.96% decrease of false positive rate despite with marginal increase of execution time. We can see that the proposed method can reduce misclassification.

Car Noise Cancellation by Using Spectral Subtraction Method Based on a New Speech/nonspeech Classification Function (새로운 음성/비음성 분류함수에 기반한 스펙트럼 차감법에 의한 차량잡음제거)

  • 박영식;이준재;이응주;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.994-1003
    • /
    • 1994
  • In this paper, a scheme of noise cancellation using spectral subreaction method with single input in an autombile noise environment is proposed. In order to remove the changing automonile noise components form the noisy speech signal, the noise of various states is analyzed and its characteristics are presented. For the decision of speech/nonspeech and the estimation of noise spectrum, a classification function is proposed on the basis of noise analysis. This function presents the precise decision of speech/nonspeech and the optimal estimation of noise spectrum with less computation. As the result of the estimation of noise spectrum by the proposed classification function, the clean speech signal is extracted from the noisy speech signal with high signal-to-ratio.

  • PDF

Vehicle Detection and Classification Using Textural Similarity in Wavelet Domain (웨이브렛 영역에서의 질감 유사성을 이용한 차량검지 및 차종분류)

  • 임채환;박종선;이창섭;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1191-1202
    • /
    • 1999
  • We propose an efficient vehicle detection and classification algorithm for an electronic toll collection using the feature which is robust to abrupt intensity change between consecutive frames. The local correlation coefficient between wavelet transformed input and reference images is used as such a feature, which takes advantage of textural similarity. The usefulness of the proposed feature is analyzed qualitatively by comparing the feature with the local variance of a difference image, and is verified by measuring the improvements in the separability of vehicle from shadowy or shadowless road for a real test image. Experimental results from field tests show that the proposed vehicle detection and classification algorithm performs well even under abrupt intensity change due to the characteristics of sensor and occurrence of shadow.

  • PDF