• Title/Summary/Keyword: 쪼갬 파괴

Search Result 35, Processing Time 0.129 seconds

Failure Probability Models of Concrete Subjected to Split Tension Repeated- Loads (쪼갬인장 반복하중을 받는 콘크리트의 파괴확률 모델)

  • 김동호;김경진;이봉학;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.311-314
    • /
    • 2003
  • Concrete structures such as bridge, pavement, airfield, and offshore structure are normally subjected to repeated load. This paper proposes a failure probability models of concrete subjected to split tension repeated-loads, based on experimental results. The fatigue tests were performed at the stress ratio of 0.1, the loading shape of sine, the frequency of 20Hz, and the stress levels of 90, 80 and 70%. The fatigue test specimen was 150mm in diameter and 75mm in thickness. The fatigue analysis did not include which exceeded 0.9 of statistical coefficient of determination values or did not failure at 2$\times$$10^6$ cycles. The graphical method, the moment method, and maximum likelihood estimation method were used to obtain Weibull distribution parameters. The goodness-of-fit test by Kolmogorov-Smirnov test was acceptable 5% level of significance. As a result, the proposed failure probability model based on the two-parameter($\alpha and \mu$) Weibull distribution was good enough to estimate accurately the fatigue life subjected to tension mode.

  • PDF

Failure Behaviour and Shear Strength Equations of Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 파괴거동과 전단강도 산정식)

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

The Fatigue Crack Growth Behavior of Concrete (콘크리트의 피로균열 성장거동에 관한 연구)

  • 김진근;김윤용
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.127-135
    • /
    • 1997
  • In this study, the wedge splitting tcst (WST) was carried out for the fatigue wack growth behavior of concrete. Selected test variables were concrete compressive strength of 28, 60 and 118 MI%, and stress ratio with 2 levels (6. 13%). In oder to make the designed stress ratio, the maximum and thr minimum fatigue loading level were 75-85% and 5- 10% of ultimate static load, respectively. Fatigue testing was preceded by crack mout.h opening displacement (CMOI)) compliance calibration tcst, and then the fatigue crack growth was computed by crack lcngth vs. (lMOI) compliance relations acquisited by the CMOD compliance calibration technique. To evaluate thc validity of CMOD compliancc calibration techniquc, the crack length p~mlicted by this method was cornpard with the crack length by linear elastic fracture mechanics(LEFIbl) and dyeing test. On the basis of the experimental results, a LRFhl-based c.mpirica1 model for f'at,igue crack growth rate(da/dN-AKI relationships) was presented. The fat,igut. crack growth ratc increased with the strength of concwtc. It appcars that t.he da/tiN-AKI relationships was influenced by stress ratio, however, the effect is diminished with an increase of strength. The comparisons between CblOl) compliance calibration technique anti the other. methods gave the validity of' ('MOD compliance calibration technique for the LZXT.

Fatigue Lives of Pavement Concrete According to Fatigue Test Methods (실험방법에 따른 포장 콘크리트의 피로수명)

  • Yun, Kyong-Ku;Kim, Dong-Ho;Hong, Chang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.3 s.17
    • /
    • pp.11-20
    • /
    • 2003
  • Concrete structures such as bridges, pavement, and offshore structures are normally subjected to repeated load. Because highway and airfield pavements are to resist tension in bending, fatigue failure behavior is very important the fatigue life of materials. Therefore, in this paper was carried according to the fatigue test method and experiment variables for pavement concrete. The fatigue tests were applied split tension($150{\times}75$ in size) and flexural($150mm{\times}150mm{\times}550mm$ in size) beam fatigue test method. Major experimental variable in the fatigue tests in order to consideration of fatigue life were conducted loading frequency of 1, 5, 10, 20Hz and loading shape of block, sine, triangle and moisture condition of dry and wet condition and curing age of 28day and 56day. The test results show that the effect of loading frequency increasing the frequency increased fatigue life, decreased significant at frequencies below 200 cycles. The effect of loading wave form on fatigue life show that a block decreased, triangular increased in comparison with sine. The effect of moisture condition decreased in wet condition in comparison with dry condition. The effect of curing age increased in 564ays in comparison with 28day.

  • PDF

Development of an ECC(Engineered Cementitious Composite) Designed with Ground Granulated Blast Furnace Slag (고로슬래그미분말이 혼입된 ECC(Engineered Cementitious Composite)의 개발)

  • Kim, Yun-Yong;Kim, Jeong-Su;Ha, Gee-Joo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.21-28
    • /
    • 2006
  • This paper presents both experimental and analytical studies for the development of an ECC(Engineered Cementitious Composites) using ground granulated blast furnace slag(slag). This material has been focused on achieving moderately high composite strength while maintaining high ductility, represented by strain-hardening behavior in uniaxial tension. In the material development, micromechanics was adopted to properly select optimized range of the composition based on steady-state cracking theory and experimental studies on matrix, and interfacial properties. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties of the fiber in a matrix and the fracture toughness of mortar matrix. The addition of the slag resulted in slight increases in the frictional bond strength and the fracture toughness. Subsequent direct tensile tests demonstrate that the fiber reinforced mortar exhibited high ductile uniaxial tension behavior with a maximum strain capacity of 3.6%. Both ductility and tensile strength(~5.3 MPa) of the composite produced with slag were measured to be significantly higher than those of the composite without slag. The slag particles contribute to improving matrix strength and fiber dispersion, which is incorporated with enhanced workability attributed to the oxidized grain surface. This result suggests that, within the limited slag dosage employed in the present study, the contribution of slag particles to the workability overwhelms the side-effect of decreased potential of saturated multiple cracking.

Bond Properties of GFRP Rebar with Cover Thickness and Volume Fraction of Steel Fiber (강섬유 혼입률과 피복두께에 따른 GFRP 보강근의 부착특성)

  • Choi, Yun-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.761-768
    • /
    • 2012
  • The purpose of this study is to investigate bond properties of GFRP used in SFRC (Steel fiber reinforced concrete) and normal concrete. The experimental variables were rebar diameter (D13, D16), steel fiber volume fraction (0~2%) and cover thickness ($1.5d_b$, $5.4d_b$). The experimental results showed a different failure mode depending on the cover thickness. Through the tested specimens, splitting failure occurred for the specimens with small cover thickness and pull out failure occurred in the specimens with large cover thickness. Introduction of steel fiber caused the specimens to have more ductile behavior of bond stresss-lip after peak stress, but they did not increase the bond strength significantly. These failure modes were shown in both steel reinforcement and GFRP. However, from the difference of micro structure of bond failure mechanism between steel rebar and GFRP rebar, more ductile behavior was observed in GFRP-specimens after maximum bond strength was reached.

Flexural Reinforcement of Timber Beams Using Carbon Fiber Plates (탄소섬유판을 사용한 목재 보의 휨보강)

  • Choi, Jin-Chul;Kim, Seung-Hun;Lee, Yong-Taeg
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.238-246
    • /
    • 2022
  • This paper summarizes the development and evaluation of the reinforcement details of CFRP plates to improve the bending performance of wooden beams. In this study, the reinforcing technology using high-strength bolts for the end of beam were developed as reinforcement details for reinforcing wooden beams with CFRP plates by EBM method. In order to evaluate the bending performance, a bending test was conducted for the specimens with details of reinforcement such as the EBM method and the NSM method. From the experimental results, the EBM specimens without end restraints had both the CFRP plate attachment failure and the splitting failure of the wood. In the load-displacement curve, the non-reinforced specimens exhibited linear elastic behavior and then brittle fracture after the maximum load. The maximum load of the specimens reinforced by the EBM method increased by 31.5~63.0% compared to the non-reinforced specimens, and the maximum load according to the end restraints of the high-strength bolts increased by 24.0%. Based on the reinforcement amount of the same CFRP plate, EBM reinforcement was 2.67 times larger in maximum load increase rate than NSM reinforcement.

The Effect of Compressive Strength and Admixture on Bond Characteristic of High Strength Concrete (압축강도 및 혼화재료가 고강도콘크리트의 부착특성에 미치는 영향)

  • Lee, Gun-Su;Choi, Sun-Mi;Lee, Bum-Sik;Kim, Sang-Yun;Bae, Kee-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.109-112
    • /
    • 2008
  • In this study, Assessment of bond property of HSC with the rate of Blust-furnace(0, 12, and 25 percent by weight cement) and Evaluation of the relationship of the compressive strength coefficient (${\beta}$) between compressive strength with 40${\sim}$120MPa were performed. Design and Test of Bond specimens were carried out based on the ASTM C-234. Test results are follows, most specimens showed that the splitting failure in all specimens, except for B-40 series which showed that the pull-out failure. For the B-40 Series, the relation of compressive strength versus bond stress has well converged that of the proposed equation with the variation(${\beta}$=2/3) in UCB/E.E.R.C-83. The crack strength of concrete in splitting was proportioned to the compressive strength of concrete, and was the highest on the contents of blast furnace slag to 12 percent by weight of cement in each series, except for B-60 series. In the relation of admixture replacement rate versus maximum bond stress, The maximum bond stress was the highest in 12 percent by weight of cement according to less than 40MPa, and was the highest in 25 percent by weight of cement according to 80MPa.

  • PDF

Comparison of Development Length Equation of Bottom and Top GFRP Bars with Splitting Failure (쪼갬파괴된 GFRP 하부근과 상부근의 정착길이 산정식 비교)

  • Ha, Sang-Su;Yoon, Joon-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.141-149
    • /
    • 2009
  • The objective of this study was to propose a development length equation for bottom and top GFRP bars. Including the bottom and top GRPP bars, a total of 104 modified pullout tests were completed. The test variables were embedment length (15, 30, 45db), net cover thickness (0.5~2.0db), different GFRP bar types, and bar diameters (10, 13, 16mm). The average bond stresses were determined based on the modified pullout test results. Two variable linear regression analyses were performed on the results of the average bond stresses. Utilizing the 5% fractile concept, a conservative development length design equation was derived. The design equation of the development length for bottom and top GFRP bars was proposed and the design equation derived in this study was compared to the ACI 440.1R-06 committee equation.