• Title/Summary/Keyword: 쪼갬인장시험

Search Result 27, Processing Time 0.027 seconds

Fatigue Analysis of Pavement Concrete by Split Tension Fatigue Test (쪼갬인장피로시험을 이용한 포장용콘크리트의 피로해석)

  • 전성일;원치문;이주형;홍창우;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.1003-1008
    • /
    • 2002
  • The purpose of this research was to obtain fatigue property of pavement concrete by split tension fatigue test. The specimens of pavement concrete were fabricated using the concrete at jop site. The fatigue tests of split tension were performed by 4 stress levels(90%, 80%, 70%, 60%) and 3 stress ratio(0.1, 0.3, 0.5). From this research, the S-N relationship, S-N-P relationship was derived and Weibull probability density functions was plotted using the distribution parameters.

  • PDF

Study on Mechanical Properties of Geopolymer Concrete using Industrial By-Products (산업부산물을 사용한 지오폴리머 콘크리트의 역학적 특성에 관한 연구)

  • Kim, Si-Hwan;Koh, Kyung-Taek;Lee, Jang-Hwa;Ryu, Gum-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.52-59
    • /
    • 2014
  • This study examines the compressive strength, elastic modulus and splitting tensile strength of geopolymer concrete in order to evaluate its mechanical characteristics according to the admixing of fly ash and blast furnace slag. Moreover, identical tests are also conducted considering the amount of powder, the mixing ratio of alkali activator and the mixing ratio of silica fume for further comparative analysis considering various variables. The comparison with the formulae specified in Korean and overseas codes reveal that a mixing ratio of 18% is adequate for the alkali activator and that a replacement ratio of 5% by silica fume is recommended for silica fume. The elastic modulus of the geopolymer concrete appears to increase slightly with the increase of the compressive strength per variable and age and to be smaller than the values predicted by the formulae specified in Korean and overseas codes. In addition, the examination of the stress-strain curves shows that the geopolymer concrete exhibits ductile behavior compared to the conventional OPC. In view of the splitting tensile strength, high strength is observed for a powder content of $400kg/m^3$ and a replacement ratio of 18% by silica fume. The resulting ratio of the compressive strength to the splitting tensile strength is seen to range between 8.7 and 10.2%.

Fatigue Lives of Pavement Concrete According to Fatigue Test Methods (실험방법에 따른 포장 콘크리트의 피로수명)

  • Yun, Kyong-Ku;Kim, Dong-Ho;Hong, Chang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.3 s.17
    • /
    • pp.11-20
    • /
    • 2003
  • Concrete structures such as bridges, pavement, and offshore structures are normally subjected to repeated load. Because highway and airfield pavements are to resist tension in bending, fatigue failure behavior is very important the fatigue life of materials. Therefore, in this paper was carried according to the fatigue test method and experiment variables for pavement concrete. The fatigue tests were applied split tension($150{\times}75$ in size) and flexural($150mm{\times}150mm{\times}550mm$ in size) beam fatigue test method. Major experimental variable in the fatigue tests in order to consideration of fatigue life were conducted loading frequency of 1, 5, 10, 20Hz and loading shape of block, sine, triangle and moisture condition of dry and wet condition and curing age of 28day and 56day. The test results show that the effect of loading frequency increasing the frequency increased fatigue life, decreased significant at frequencies below 200 cycles. The effect of loading wave form on fatigue life show that a block decreased, triangular increased in comparison with sine. The effect of moisture condition decreased in wet condition in comparison with dry condition. The effect of curing age increased in 564ays in comparison with 28day.

  • PDF

Development of Model Equations for Strength Properties with Age in Concrete Pavement (재령에 따른 포장용 콘크리트의 강도특성 예측식 개발)

  • Yang, Sung-Chul;Kwon, Su-Ahn;Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.35-43
    • /
    • 2010
  • This study was carried out to find reliable relations between various concrete strength properties which are used as input data in concrete pavement design program. Concretes were made from different sources of coarse grained(granite, limestone and sandstone) and fine grained aggregates such as natural sand, washed sand and crushed sand. From strength test results, model equations were obtained based on the relation between strengths. For each coarse grained aggregate, models for compression-flexural strengths, compression-split tensile strengths, compressive strength-modulus and flexural-split tensile strengths with age were obtained. For concrete mixed with gneiss granite aggregates, concrete strengths were obtained from numerical mean values of concrete strengths mixed with fine grained aggregates. In addition models for concrete split tensile strengths and modulus values were provide by averaging numerically the estimated values obtained from the derived relationship and the experimental values. This is due to more scattered values of split tensile strengths and modulus values than other strength properties. Finally criteria for drying shrinkage strain as well as Poisson's ratio for concrete used in pavement were presented for all mixes with differed coarse grained aggregates.

Development of Fatigue Model for Airfield Concrete Pavement (공항 콘크리트 포장의 피로모형 개발 연구)

  • Kwon, Soo-Ahn;Yang, Hong-Seok;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.27-35
    • /
    • 2004
  • There are two methods in estimating the remaining life of in-service airfield concrete pavement. They are a method simply using the past accumulated traffic and a method using the theoretical mechanistic analysis. Since the former method is somewhat far from the actual condition, the latter method is widely used by most engineers and researchers. The most essential component of the latter method is the fatigue model of the concrete slab. A fatigue model for airfield concrete pavement is developed in this study by a series of fatigue tests using 30 concrete cylinder specimens obtained from a 10 year old in-service airfield concrete slab. Strengths for the stress ratio calculation were obtained from the split tensile test of the cores sliced. Fatigue test mode was repeated split tensile test. The R2 of developed fatigue model was 0.5. Specimens taken from another airport had been tested for validation of the model. The results showed a good fit to the model. It was also found that the fatigue life predicted from the model was a tittle greater when the stress ratio is greater than 80 percent than other fatigue models developed earlier in America.

  • PDF

A Study of Cold Room Experiments for Strength Properties of Frozen Soil (Cold Room 실험을 통한 동결토의 강도특성 연구)

  • Seo, Young-Kyo;Kang, Hyo-Sub;Kim, Eun-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.42-49
    • /
    • 2008
  • Recently many countries have become interested in the development of cold or arctic regions. The construction of engineered structures in those regions demands an understanding of the deformation characteristics of frozen soil. However, an understanding of frozen soil behavior poses difficult problems owing to the complex interaction between the soil particles and the ice matrix. In this research, a series of laboratory tests was performed to investigate the variations in the unconfined compression strength and split tensile strength of weathered granite soil and mixed soil (standard sand and kaolinite) in 15 degrees below zero environments. In the frozen soil tests, specimens were prepared with various water and clay contents, and then the interrelationships between four factors (water content, clay content, unconfined compression strength, split tensile strength) were analyzed. The test results were summarized as follows; as the water content was increased, the unconfined compressive and split tensile strengths also increased in frozen soil. However as the clay content was increased, the unconfined compressive and split tensile strengths were lowered. In the case of frozen soil that contained little clay content, the strength decreased rapidly in mixed soil (standard sand and kaolinite) when the frozen specimen was broken. On the other hand, in the cases of mixed soil that contained a high clay content and weathered granite soil, the strength decreased relatively slowly.

Nonlinear Tensile Behavior Analysis of Torque-controlled Expansion Anchors Using Finite Element Analysis (유한요소해석을 활용한 비틀림 제어 확장앵커의 비선형 인장거동 특성 분석)

  • Bang, Jin Soo;Youn, Ilro;Kwon, Yangsu;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.91-99
    • /
    • 2020
  • Post-installed anchors were widely used due to its workable benefits. Regarding the resistance performance of anchors, the critical edge distance is presented to minimize the impact of concrete splitting. In the case of actual anchors, however, it is difficult to obtain the ideal edge distance. The purpose of this study is to identify resistance performance and behavior characteristics that contain complex elements such as concrete crack occurring under tensile load. Tensile tests were conducted based on the standard method. Failure shape and the resistance characteristics that do not have the critical edge distance were derived by tensile load. Parametric analysis according to the boundary condition was performed to simulate the actual tensile behavior, through a nonlinear finite element model based on the specimen. Consequently therefore, verifying analysis results the resistance mechanism can be applied through boundary conditions.

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil (동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성)

  • Seo, Young-Kyo;Choi, Heon-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

Effect of Fly Ash on Rheology and Strength of Recycled Aggregate Concrete (순환골재와 플라이애쉬가 콘크리트 유동성 및 강도에 미치는 영향)

  • Kim, Kyu-Hun;Shin, Myoung-Su;Kong, Young-Sik;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.241-250
    • /
    • 2013
  • As the amount of construction wastes increase, reuse of demolished concrete is being considered in research areas. Reflecting these interests, this experiment was performed to clarify concrete's mechanical property and workability using recycled aggregate as a coarse aggregate. Eleven cases of concrete specimens were produced by changing the rates of replacement of coarse recycled aggregate, replacement of fly ash, design strength, and moisture state of coarse aggregate. Compressive and tensile split strength tests were taken to study the mechanical properties of hardened concrete. To verify flowability of fresh concrete, a slump test and a flow curve test using ICAR Rheometer were performed. It was found that using recycled aggregate and fly ash leads good workability by testing slump and flow curve. The yield stress of fresh concrete decreased with increase of recycled aggregate substitution rate. Through the test, it was confirmed that there is inversely proportional relationship between the slump and yield stress roughly. Recycled aggregate concrete containing fly ash has considerably lower plasticity viscosity than not containing fly ash. Strength test results showed that recycled aggregate tended to decrease compressive and tensile strength of concrete, when recycled aggregate was used as a coarse aggregate. Using over 30% recycled aggregate caused significant decreases in compressive and tensile strength. Replacing 30% cement with fly ash was helpful to improve the long-term strength of concrete.