• Title/Summary/Keyword: 쪼갬인장간도

Search Result 64, Processing Time 0.02 seconds

Nonlinear Tensile Behavior Analysis of Torque-controlled Expansion Anchors Using Finite Element Analysis (유한요소해석을 활용한 비틀림 제어 확장앵커의 비선형 인장거동 특성 분석)

  • Bang, Jin Soo;Youn, Ilro;Kwon, Yangsu;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.91-99
    • /
    • 2020
  • Post-installed anchors were widely used due to its workable benefits. Regarding the resistance performance of anchors, the critical edge distance is presented to minimize the impact of concrete splitting. In the case of actual anchors, however, it is difficult to obtain the ideal edge distance. The purpose of this study is to identify resistance performance and behavior characteristics that contain complex elements such as concrete crack occurring under tensile load. Tensile tests were conducted based on the standard method. Failure shape and the resistance characteristics that do not have the critical edge distance were derived by tensile load. Parametric analysis according to the boundary condition was performed to simulate the actual tensile behavior, through a nonlinear finite element model based on the specimen. Consequently therefore, verifying analysis results the resistance mechanism can be applied through boundary conditions.

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

The Effect of Aging and Temperature on the Splitting Tensile Strength of Concrete (재령과 온도가 콘크리트의 쪼갬인장강도에 미치는 영향)

  • 강승민;안남식;양성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.745-750
    • /
    • 2003
  • Used domestic aggregate for concrete pavement, the splitting tensile strength of concrete were investigated and quantitative analyses for the characteristics of the experimental factors were evaluated. This paper reports the results of curing temperature and age on the splitting tensile strength and it suggests a prediction model based on these experimental results. Tests of cylindrical specimens made of granite as a coarse aggregate, cured in isothermal conditions of 0, 23, and $45^{\circ}C$ and tested at the ages of 1, 7, and 28 days are reported. Based on the experimental result, the relationships between the splitting tensile strength and maturity were analyzed and proposed.

  • PDF

Effect of pouring range of super retarding concrete using fly ash on water Permeability and splitting tensile strength of construction joints (플라이애시를 사용한 초지연 콘크리트의 타설범위가 시공줄눈의 수밀성 및 쪼갬인장강도에 미치는 영향)

  • Jeong, Jun-Taek;Park, Jae-Woong;Jeong, Yeong-Jin;Lim, Gun-Su;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.23-24
    • /
    • 2023
  • This study attempted to derive an appropriate application range by reviewing the integration performance of joints according to the application range of SRA concrete. As a result, it was confirmed that the integration performance was improved even if SRA concrete was placed only by 75mm, which is 0.5 times the thickness of the member.

  • PDF

Development of an ECC(Engineered Cementitious Composite) Designed with Ground Granulated Blast Furnace Slag (고로슬래그미분말이 혼입된 ECC(Engineered Cementitious Composite)의 개발)

  • Kim, Yun-Yong;Kim, Jeong-Su;Ha, Gee-Joo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.21-28
    • /
    • 2006
  • This paper presents both experimental and analytical studies for the development of an ECC(Engineered Cementitious Composites) using ground granulated blast furnace slag(slag). This material has been focused on achieving moderately high composite strength while maintaining high ductility, represented by strain-hardening behavior in uniaxial tension. In the material development, micromechanics was adopted to properly select optimized range of the composition based on steady-state cracking theory and experimental studies on matrix, and interfacial properties. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties of the fiber in a matrix and the fracture toughness of mortar matrix. The addition of the slag resulted in slight increases in the frictional bond strength and the fracture toughness. Subsequent direct tensile tests demonstrate that the fiber reinforced mortar exhibited high ductile uniaxial tension behavior with a maximum strain capacity of 3.6%. Both ductility and tensile strength(~5.3 MPa) of the composite produced with slag were measured to be significantly higher than those of the composite without slag. The slag particles contribute to improving matrix strength and fiber dispersion, which is incorporated with enhanced workability attributed to the oxidized grain surface. This result suggests that, within the limited slag dosage employed in the present study, the contribution of slag particles to the workability overwhelms the side-effect of decreased potential of saturated multiple cracking.

Development and Splice Lengths of FRP Bars with Splitting Failures (쪼갬파괴에 의한 FRP 보강근의 정착길이와 이음길이)

  • Chun, Sung-Chul;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.519-525
    • /
    • 2010
  • Data from beam-based bond tests for FRP bars in the literature were collected and regression analyses were conducted for the data of splitting failure. Average bond strengths obtained from splice tests were found to be lower and more affected by C/$d_b$ values than average bond strengths from anchorage tests, indicating needs of new design equation for the splice length of FRP bars based on the data of splice tests only. In addition, the variation of bond strengths was greater than that of tensile strengths of FRP bars and, therefore, a new safety factor should be involved for the design equation. Five percent fractile coefficients were used to develop the design equations based on the assumption that load and resistance factors for FRP reinforced concrete structures are same to the factors for steel reinforced concrete structures. The proposed design equations give economical and reliable lengths for development and splice of FRP bars. The proposed equation for splice provides shorter lengths than the ACI 440 equation in case of C/$d_b$ of 3.0 or greater. Because FRP bars are expected to be used in slabs and walls exposed to weather with thick cover and large spacing between bars, the proposed equation gives optimal splice lengths.

Experimental Study on the Bond Properties between GFRP Reinforcements and Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트와 GFRP 보강근의 부착특성에 관한 실험적 연구)

  • Choi, Yun-Cheul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.573-581
    • /
    • 2013
  • In this paper, an experimental investigation of bond properties between steel fiber reinforced concrete and glass fiber reinforced polymer reinforcements was performed. The experimental variables were diameter of reinforcements, volume fraction of steel fiber, cover thickness and compressive strength of concrete. Bond failure mainly occurred with splitting of concrete cover. Main factor for splitting of concrete is tension force occurred by the displacement difference between reinforcements and concrete. Therefore, in order to prevent the bond failure between reinforcements and concrete, capacity of tensile strength of concrete cover should be upgraded. As a results of test, volume fraction of steel fiber significantly increases the bond strength. Cover thickness changes the failure mode. Diameter of reinforcements also changes the failure mode. Generally, diameter of reinforcement also affects the bond properties but this effect is not significant as volume fraction of fiber. Increase of compressive strength increases the bond strength between concrete and reinforcement because compressive strength of concrete directly affects the tensile strength of concrete.

A Study on the Variation of Strength and Color According to Heated Temperatures of Fire­Damaged Concrete (화재피해 콘크리트의 수열온도에 따른 강도 및 색상 변화 연구)

  • Choi, Kwang-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.325-332
    • /
    • 2020
  • In the safety diagnosis of fire-damaged concrete structures, it is difficult to evaluate the strength and changes in materials due to high temperatures with the existing durability analysis method. In particular, the compressive strength of specimen with different damage levels by thickness is used as a representative value for reducing the compressive strength of the structural member. In this study, a heating experiment was performed with only top face heating and fully heating conditions at 400℃ to 800℃. After heating, splitting tensile test and color analysis were performed to sliced specimens with a thickness of 20mm accompanied by the compressive test of a fully heated specimen. As a result of the experiment, the compressive strength reduction rate calculated from the splitting tensile strength of every sliced specimen appeared to be within 10% of the fully heated specimen on aver age, and the hue value analysis showed consistent color values were observed by red at 400℃-600℃ and gray at 700℃ or above. It follows that the techniques proposed in this study are reasonably assessable to estimate heated temperature and residual compressive strength and damage depth of concrete.

Effect of Fly Ash on Rheology and Strength of Recycled Aggregate Concrete (순환골재와 플라이애쉬가 콘크리트 유동성 및 강도에 미치는 영향)

  • Kim, Kyu-Hun;Shin, Myoung-Su;Kong, Young-Sik;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.241-250
    • /
    • 2013
  • As the amount of construction wastes increase, reuse of demolished concrete is being considered in research areas. Reflecting these interests, this experiment was performed to clarify concrete's mechanical property and workability using recycled aggregate as a coarse aggregate. Eleven cases of concrete specimens were produced by changing the rates of replacement of coarse recycled aggregate, replacement of fly ash, design strength, and moisture state of coarse aggregate. Compressive and tensile split strength tests were taken to study the mechanical properties of hardened concrete. To verify flowability of fresh concrete, a slump test and a flow curve test using ICAR Rheometer were performed. It was found that using recycled aggregate and fly ash leads good workability by testing slump and flow curve. The yield stress of fresh concrete decreased with increase of recycled aggregate substitution rate. Through the test, it was confirmed that there is inversely proportional relationship between the slump and yield stress roughly. Recycled aggregate concrete containing fly ash has considerably lower plasticity viscosity than not containing fly ash. Strength test results showed that recycled aggregate tended to decrease compressive and tensile strength of concrete, when recycled aggregate was used as a coarse aggregate. Using over 30% recycled aggregate caused significant decreases in compressive and tensile strength. Replacing 30% cement with fly ash was helpful to improve the long-term strength of concrete.

A Study on the Strength and Durability of Polymer-Modified Mortars using Eco-friendly UM resin (친환경 UM수지를 사용한 폴리머 시멘트 모르타르의 강도 및 내구성에 관한 연구)

  • Kwon, Min-Ho;Kim, Jin-Sup;Park, Su-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.943-948
    • /
    • 2013
  • In this study, the characteristics of polymer-modified mortar which include UM resin, eco-friendly resin, was studied for improving the durability of concrete. UM and cement mortar were mixed with a certain percentage. Eco-friendly UM resin polymer-modified mortar was evaluated by compressive strength, splitting tensile strength, flexural strength, water absorption and chemical resistance experiments. The characteristics of eco-friendly UM resin polymer-modified mortar were evaluated by experiments. Performance of compressive strength and splitting tensile strength were decreasing. On the other hand, performance of flexural strength, water absorption and chemical resistance were increasing. Eco-friendly UM resin polymer-modified mortar reinforced concrete durability performance is excellent.