• Title/Summary/Keyword: 집합기반설계

Search Result 284, Processing Time 0.034 seconds

Optimization of Early-phase Ship Design using Set-Based Design and Genetic Algorithm (집합기반설계와 유전자알고리즘을 이용한 초기단계 함정설계 최적화)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.486-492
    • /
    • 2019
  • The system-based approach is needed to select an optimal mix of weapon systems and ship platform among a variety of design alternatives with the uncertainties of the initial required operational capability. In the early-phase design, which included a feasibility study and concept design, it is possible to cause problems when a review of the operational concept, database development, and systematic design are not done, thereby producing uncertain and unstable requirements. To select the best solution without trial-and-error, the U.S. navy has applied the set-based method for the early-phase design of a new ship-to-shore connector. The ship synthesis model plays an important role in applying the set-based method, but only a few countries possess this model and have prohibited this model from being transferred to other countries. This paper suggests a set-based method using a genetic algorithm and decision-making theory through benchmarking existing ship data. The algorithm was verified using the DDG-51 class ship synthesis model to optimize the weapon system design, which has been released for research purposes.

Optimal Design of Fuzzy Set-based Fuzzy Neural Network with Multi-Output and Its application to Partial Discharge Pattern Recognition (다중 출력을 가진 퍼지 집합 기반 퍼지뉴럴네트워크 최적 설계 및 부분방전 패턴인식으로의 적용)

  • Park, Geon-Jun;O, Seong-Gwon;Kim, Hyeon-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.411-414
    • /
    • 2008
  • 본 논문에서는 다중 출력을 가지는 퍼지 집합 기반 퍼지뉴럴네크워크(Fuzzy-Nueral Network; FNN)를 설계한다. 퍼지 집한 기반 퍼지뉴럴네트워크는 각 입력 변수에 따른 개별적인 입력 공간을 공간 분할함으로서 네트워크를 구성한다. 규칙의 전반부는 앞서 언급한 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 각 입력에 대한 전반부 멤버쉽 함수의 정점과 학습률 및 모멤텀 계수를 유전자 알고리즘을 이용하여 최적 동조한다. 따라서 유전자 알고리즘을 이용하여 퍼지뉴럴네트워크를 최적 설계한다. 제안된 네트워크는 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 200개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류한다.

  • PDF

Design of Feed-Forward Fuzzy Set-based Neural Networks Using Symbolic Encoding and Information Granulation (기호코딩 및 정보입자를 이용한 전방향 퍼지 집합 기반 뉴럴네트워크의 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2089-2090
    • /
    • 2006
  • 본 논문은 기호 코딩 및 정보입자를 이용한 유전자 알고리즘의 전방향 퍼지 집합 기반 뉴럴네트워크 (Information Granules and Symbolic Encoding-based Fuzzy Set Polynomial Neural Networks ; IG and SE based FSPNN)의 모델 설계를 제안한다. 기존 퍼지 집합기반 다항식 뉴럴네트워크(FSPNN)의 구조 최적화를 위해 이진코딩을 사용하였다. 그러나 이진코딩에서 스트링의 길이가 길면 길수록 인접한 두 수 사이에 발생하는 급격한 비트 차이라는 해밍절벽이 발생하였다. 이에 제안된 모델에서는 해밍절벽의 문제를 해결하기 위해 기호코딩을 사용하였다. 제안된 모델은 각 입력에 대해 MFs의 개수 만큼 규칙을 생성하는 Fuzzy 집합기반 다항식 뉴럴네트워크(FSPNN)를 그대로 사용한다. 그리고 IG based gFSPNN의 평가을 위해 실험적 예제를 통하여 제안된 모델의 성능 및 근사화 능력의 우수함을 보인다.

  • PDF

Design of Interval Type-2 Fuzzy Set-based Fuzzy Neural Network and Its Optimization (Interval Type-2 퍼지 집합 기반 퍼지뉴럴네트워크 설계 및 최적화)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1901_1902
    • /
    • 2009
  • 본 논문에서는 Interval Type-2 퍼지 집합을 이용한 퍼지집합 기반 퍼지뉴럴네트워크를 설계하고 최적화한다. Interval Type-2 퍼지뉴럴네트워크는 각 입력 변수에 따른 서로 분리된 입력 공간을 분할함으로서 네트워크 및 규칙을 구성한다. 규칙의 전반부는 퍼지 입력 공간을 개별적으로 분할하여 표현하고, 각 공간은 Interval Type-2 퍼지 집합으로 구성된다. 규칙의 후반부는 Interval 집합을 이용하여 다항식으로서 표현되며, 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식을 학습한다. 또한, 각 입력에 대한 전반부 멤버쉽함수의 정점과 불확실성 계수 그리고 학습률 및 모멘텀 계수를 유전자 알고리즘을 이용하여 최적 동조한다. 제안된 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

Design of GA-based Fuzzy Polynomial Neural Networks Architecture (유전자 기반 퍼지다항식 뉴럴네트워크 구조의 설계)

  • 박병준;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.442-445
    • /
    • 2004
  • 본 논문은 유전자 기반 퍼지다항식 뉴럴네트워크(Genetic based fuzzy polynomial neural networks: gFPNN)를 제안한다. gFPNN 구조는 퍼지집합을 기반으로 설계되며, 유전자 알고리즘에 의해 구조 및 파라미터를 최적화한 구조이다. 퍼지집합을 기반으로 설계되어진 퍼지뉴럴네트워크는 간략추론 구조와 선형추론 구조로 설계된다. 본 논문에서는 간략추론 및 선형추론 구조를 통합 및 확장한 퍼지다항식 뉴럴네트워크를 설계한다. 이 구조는 연결가중치를 이용하여 회귀다항식을 네트워크 구조로 표현하며, 간략추론(Type 0), 선형추론(Type 1), 회귀다항식추론(Type 2)을 모두 포함한다. 또한 퍼지규칙 후반부의 다항식 차수를 각 규칙에 대해 다르게 선택할 수 있으며, 일률적인 형식의 구조를 벗어나 주어진 시스템의 특성에 따라 유연한 구조를 설계할 수 있도록 한다. 여기에 더하여, 네트워크 구조와 파라미터 동조에 유전자 알고리즘을 적용하며, 구조와 파라미터 동정에 대한 효율적인 방법을 논의한다. 제안된 모델의 평가를 위해 수치예제를 이용한다.

  • PDF

Optimal Design of Interval Type-2 Fuzzy Set-based Multi-Output Fuzzy Neural Networks (다중 출력을 가지는 Interval Type-2 퍼지 집합 기반 퍼지 뉴럴 네트워크 최적 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1968-1969
    • /
    • 2011
  • 본 논문에서는 패턴 인식을 위한 다중 출력을 가지는 Interval Type-2 퍼지 집합을 이용한 퍼지 집합 기반 퍼지 뉴럴 네트워크를 소개한다. Interval Type-2 퍼지 집합 기반 퍼지 뉴럴 네트워크는 각 입력 변수에 따른 서로 분리된 입력 공간을 분할함으로서 네트워크 및 규칙을 구성한다. 규칙의 전반부는 퍼지 입력 공간을 개별적으로 분할하여 표현하고, 각 공간은 Interval Type-2 퍼지 집합으로 구성된다. 규칙의 후반부는 패턴 인식을 위한 다중 출력을 가지며 Interval 집합을 이용하여 다항식으로서 표현된다. 다항식의 계수인 연결가중치는 오류역 전파 알고리즘을 이용하여 학습한다. 또한 실수 코딩 유전자 알고리즘을 이용하여 제안된 네트워크를 최적화한다. 제안된 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

Design & Implementation of a Spatio-Temporal Data Generator for Moving object Databases (이동객체 데이타베이스를 위한 시공간 데이타 생성기의 설계 및 구현)

  • 정종환;전세길;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.82-84
    • /
    • 2003
  • 위치 기반 서비스 시스템은 이동객체에 대한 효율적인 검색을 가능하게 해주는 시스템으로 이동객체의 현재와 과거 위치에 대한 정보를 유지한다. 이러한 시스템을 평가하기 위해서는 이동객체들의 사실적인 움직임을 기술한 데이타 집합이 필요하다. 이러한 데이타 집합을 생성하는 대표적인 생성기로는 GSTD가 있다. 하지만 GSTD도 몇 가지 문제점을 지니고 있다. GSTD에 의해서 생성되는 작업공간과 데이타 집합은 실생활 객체의 움직임을 묘사하는데 부적절한 면이 있다. 또한 GSTD가 제공하는 매개변수 안에 사용자가 객체의 이동성과 시간성을 명확히 기술 해줄 수 있는 부분이 제시 되어 있지 않다. 본 논문에서는 GSTD의 여러 매개변수들과 함수들을 변환하거나 추가하여 좀 더 현실적인 객체 움직임을 나타내는 데이타 집합을 만들고, 사용자가 객체의 특성을 세밀히 지정해 줄 수 있는 확장된 GSTD를 구현한다. 또한 확장된 GSTD 기반 LBS 시뮬레이터의 설계와 구현에 관한 원리를 포함한 주요 특징을 기술한다. 확장된 GSTD는 다양한 LBS 응용 시스템의 성능 측정에 활용될 수 있을 것이다.

  • PDF

Online Learning based Human Tracking by Collecting Training Samples (훈련 샘플 수집을 통한 온라인 학습 기반 사람 추적 방법)

  • Gil, Jong-in;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.19-20
    • /
    • 2016
  • 비디오로부터 객체를 검출하기 위해서는 오프라인에서 미리 객체를 검출할 수 있는 분류기가 학습되어있어야 한다. 이러한 분류기는 훈련에 사용된 훈련 집합에 매우 의존적이어서, 다양한 환경의 비디오 영상에 모두 적용할 수 있는 분류기의 설계는 불가능하다. 또한 분류기의 학습을 위해서는 상당히 많은 수의 훈련 집합이 필요하므로, 이는 신뢰도 높은 분류기 학습을 위한 높은 비용을 초래한다. 본 논문에서는 이러한 문제를 해결 할 수 있는 온라인 학습 기반 사람 추적 방법을 제안한다. 실험 영상으로부터 적절하게 훈련 집합을 수집함으로써 해당 실험 영상에 최적화된 분류기의 학습이 가능하며, 다양한 환경의 영상에 적용적으로 설계될 수 있다.

  • PDF

New Method for Preference Measurement in Ranking-based Conjoint Analysis (순위기반 컨조인트분석에서 선호도측정을 위한 새로운 방법)

  • Kim, Bu-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.185-195
    • /
    • 2014
  • Ranking-based conjoint analysis is widely used in various fields such as marketing research. While the ranking-based conjoint affords several advantages over the rating-based or choice-based conjoint, it has a serious shortcoming that respondents have much difficulty in ranking the product profiles in order of preference when many profiles are involved. This article suggests a new method for the preference measurement to improve the response efficiency. The method employs the concept of ranking sets that let the respondent evaluate a small number of profiles at a time. Through the proposed method, preference rankings of profiles obtained from each ranking set are aggregated to generate overall rankings. The balanced incomplete block design is expanded and transformed to the dual design in order to construct well-balanced ranking sets that can accommodate a large number of profiles. The proposed method is applied to the analysis of consumer preferences for perfume-for-women.

Design of Automatic Document Classifier for IT documents based on SVM (SVM을 이용한 디렉토리 기반 기술정보 문서 자동 분류시스템 설계)

  • Kang, Yun-Hee;Park, Young-B.
    • Journal of IKEEE
    • /
    • v.8 no.2 s.15
    • /
    • pp.186-194
    • /
    • 2004
  • Due to the exponential growth of information on the internet, it is getting difficult to find and organize relevant informations. To reduce heavy overload of accesses to information, automatic text classification for handling enormous documents is necessary. In this paper, we describe structure and implementation of a document classification system for web documents. We utilize SVM for documentation classification model that is constructed based on training set and its representative terms in a directory. In our system, SVM is trained and is used for document classification by using word set that is extracted from information and communication related web documents. In addition, we use vector-space model in order to represent characteristics based on TFiDF and training data consists of positive and negative classes that are represented by using characteristic set with weight. Experiments show the results of categorization and the correlation of vector length.

  • PDF