• Title/Summary/Keyword: 집전체

Search Result 65, Processing Time 0.023 seconds

Improvement of Cycle Performance of Graphite-Silicon Monoxide Mixture Negative Electrode in Lithium-ion Batteries (흑연과 실리콘 일산화물의 혼합물로 구성된 리튬이온 이차전지용 음극의 사이클 성능개선 연구)

  • Kim, Haebeen;Kim, Tae Hun;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.155-163
    • /
    • 2019
  • Mixture electrodes of a graphite having a good cycle performance and a silicon monoxide (SiO) having a high capacity are fabricated and their cycle performances are evaluated as negative electrodes for lithium-ion batteries. The electrode prepared by mixing the natural graphite and carbon-coated SiO in a mass ratio of 9:1 shows a reversible capacity of $480mAh\;g^{-1}$, 33% higher than that of graphite. However, the capacity deteriorates continuously upon cycling due to the volume change of silicon monoxide. In this study, the factors that can improve the cycle performance have been discussed through the change in the configurations of the electrode and the electrolyte. The electrode using the carboxymethyl cellulose (CMC) binder shows the best cycle performance compared to the conventional binders. The electrode sing the CMC and styrene-butadiene rubber (SBR) binder not only has almost the similar cycle characteristics with the electrode using the CMC binder but also has the better rate capability. When the fluoroethylene carbonate (FEC) is used as an electrolyte additive, the cycle life is improved. However, the electrolyte with 5 wt% of FEC is appropriate because the rate capability decreases when the content of FEC is increased to 10 wt%. In addition, when the mass loading of the electrode is lowered, the cycle performance is greatly improved. Also, enhanced cycle performance is achieved using the roughened Cu current collector polished by abrasive paper.

A Review of Structural Batteries with Carbon Fibers (탄소섬유를 활용한 구조용 배터리 연구 동향)

  • Kwon, Dong-Jun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2021
  • Carbon fiber reinforced polymer (CFRP) is one of the composite materials, which has a unique property that is lightweight but strong. The CFRPs are widely used in various industries where their unique characteristics are required. In particular, electric and unmanned aerial vehicles critically need lightweight parts and bodies with sufficient mechanical strengths. Vehicles using the battery as a power source should simultaneously meet two requirements that the battery has to be safely protected. The vehicle should be light of increasing the mileage. The CFRP has considered as the one that satisfies the requirements and is widely used as battery housing and other vehicle parts. On the other hand, in the battery area, carbon fibers are intensively tested as battery components such as electrodes and/or current collectors. Furthermore, using carbon fibers as both structure reinforcements and battery components to build a structural battery is intensively investigated in Sweden and the USA. This mini-review encompasses recent research trends that cover the classification of structural batteries in terms of functionality of carbon fibers and issues and efforts in the battery and discusses the prospect of structural batteries.

Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries (리튬-황 전지용 프리스탠딩 플렉서블 S/CNT/NiO 전극의 제조 및 전기화학적 특성)

  • Shin, Yun Jung;Lee, Won Yeol;Kim, Tae Yun;Moon, Seung-Guen;Jin, En Mei;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.184-192
    • /
    • 2022
  • Porous NiO synthesized via hydrothermal synthesis was used in the electrodes of lithium-sulfur batteries to inhibit the elution of lithium polysulfide. The electrode of the lithium-sulfur battery was manufactured as a freestanding flexible electrode using an economical and simple vacuum filtration method without a current collector and a binder. The porous NiO-added S/CNT/NiO electrode exhibited a high initial discharge capacity of 877 mA h g-1 (0.2 C), which was 125 mA h g-1 higher than that of S/CNT, and also showed excellent retention of 84% (S/CNT: 66%). This is the result of suppressing the dissolution of lithium polysulfide into the electrolyte by the strong chemical bond between NiO and lithium polysulfide during the charging and discharging process. In addition, for the flexibility test of the S/CNT/NiO electrode, the 1.6 × 4 cm2 pouch cell was prepared and exhibited stable cycle characteristics of 620 mA h g-1 in both the unfolded and folded state.

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures (리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성)

  • Kwon, Ji-Y.;Ryu, Ji-Heon;Kim, Jun-Ho;Chae, Oh-B.;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.

Enhanced Performance in a Lithium-ion Battery via the Crystal-aligned LiNi0.6Mn0.2Co0.2O2 and the Relevant Electrochemical Interpretation (결정배향 LiNi0.6Mn0.2Co0.2O2 전극활물질을 통한 리튬이차전지 성능 향상 및 이의 전기화학적 해석)

  • Cham, Kim
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.6
    • /
    • pp.451-458
    • /
    • 2022
  • Through the crystal alignment research based on the magnetic properties of LiNixMnyCo1-(x+y)O2 such as magnetic susceptibility and related anisotropy, a crystal aligned LiNi0.6Mn0.2Co0.2O2 electrode is obtained, in which the (00l) plane is frequently oriented perpendicular to the surface of a current collector. The crystal aligned LiNi0.6Mn0.2Co0.2O2 electrode steadily exhibits low electrode polarization properties during the charge/discharge process in a lithium-ion battery, thus affording an improved capacity compared to a pristine LiNi0.6Mn0.2Co0.2O2 electrode. The aligned LiNi0.6Mn0.2Co0.2O2 electrode may have an appropriate structural nature for fast lithium-ion transport due to the oriented (00l) plane, and thus it contributes to enhancing the battery performance. This enhancement is analyzed in terms of various electrochemical theories and experiment results; thus, it is verified to occur because of the considerably fast lithium-ion transport in the aligned LiNi0.6Mn0.2Co0.2O2 electrode.