• Title/Summary/Keyword: 질의전지

Search Result 220, Processing Time 0.029 seconds

Characteristics of Three-Component Carbonate Electrolytes in Terms of Oxygen Reduction and NiO Dissolution (산소환원 및 산화니켈의 용해거동으로부터 본 삼원계 탄산염 전해질의 특성)

  • Lee, C.G.;Taniguchi, T.;Uchida, I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.178-182
    • /
    • 2003
  • The oxygen reduction and NiO dissolution behaviors in Li-Na-K three component carbonate melts have been investigated with various compositions through electrochemical and chemical ways. The oxygen reduction currents and NiO solubilities were measured at $650^{\circ}C$ and atmospheric condition in Li-Na-K =47.4-32.6-20, 60-20-20, 50-40-10, $40-40-20 mol\%$ carbonate melts. The oxygen reduction currents showed dependence on the composition, indicating oxygen solubility is a function of carbonate composition. At the composition of $ Li-Na-K=50-40-10 mol%$, a broader peak was observed, suggesting different oxygen reduction mechanism probably prevails in this composition. In contrast, insignificant differences of NiO solubility were obtained among the compositions.

Development and Estimation of Double-Drainage System in Urban Areas against Localized High-Intensity Rainfall (집중호우에 대비한 도시지역 이중배수 시스템 개발 및 평가)

  • Kim, Tae Beom;Kim, Yong In;Kim, Yong In;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.362-366
    • /
    • 2015
  • 지난 백여 년 동안 인간은 과거의 그 어떤 선조들도 이루지 못한 지식과 기술의 발전을 통해 고도로 산업화된 사회를 이루었지만, 전 지구적으로 기후변화라는 부차적인 결과와 현실에 직면하고 있다. 이상기후 현상은 전지구 규모뿐만 아니라 일정한 소규모 지역에서도 관측되고 있으며, 국내에서는 특히 특정 지역에 국한되어 단시간에 발생하는 집중호우가 대표적인 사례이다. 현재까지 집중호우 발생 지역과 정도를 예측하기란 불가능한 상태이며, 산업화와 도시화가 진행될수록 그 피해는 더욱 증가할 것으로 예상된다. 따라서 집중호우에 대비한 도시 배수 시스템을 재점검할 필요가 있으며, 기존의 배수시설을 대체할 만큼 효율적인 배수구조물의 개발이 시급하다. 기존 도시지역의 측구형 수로관에는 마감불량, 정밀시공의 어려움, 이물질의 누적과 물고임, 노출로 인한 파손, 포장층 침투수 배수문제 등 많은 문제점들이 존재한다. 따라서 본 연구에서는 기존의 측구형 수로관의 단점을 보완하는 더욱 효율적인 집수정을 개발하고자 하였다. 집수정을 덮고 있는 포장층 상부면을 따라 흐르는 표면수를 처리할 뿐만 아니라, 포장층 내부로 스며드는 침투수를 처리 가능하도록 구조체 상부에 침투수 유입공을 설치하여, 표면수와 침투수를 동시에 고려하는 이중배수 시스템을 구성하였다. 본 연구에서 개발하는 집수정 구조체는 침투수에 의한 도로 및 구조체의 내구성 감소 및 겨울철 동파 현상을 방지할 수 있을 뿐 아니라, 단순공정, 시공성 향상, 유지비용절감 등 기존 배수 시스템과 비교해 많은 장점을 내포하고 있다. 본 연구에서 개발하는 이중배수 집수정의 효율 및 배수능력 평가를 위해서는 기존의 구조체와 차별되는 침투수 유입공에 대한 평가가 선행되어야 한다. 이를 위해서 침투수 유입공에 대한 실내 실험 장치를 구축하였으며, 반복 실험을 통해 침투수 유입공을 통한 배출 능력을 평가하고자 하였다. 또한 실험 결과를 바탕으로 구조체의 효능을 결정짓는 기준을 제시하고자 한다.

  • PDF

Preparation of V3.5+ Electrolyte for Vanadium Redox Flow Batteries using Carbon Supported Pt Dendrites Catalyst (카본 담지 백금 덴드라이트 촉매를 이용한 바나듐 레독스 흐름전지용 3.5가 바나듐 전해질의 제조)

  • Lee, Hojin;Kim, Hansung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.113-119
    • /
    • 2021
  • In this study, impurity free V3.5+ electrolytes were prepared using formic acid as a reducing agent and PtD/C as a catalyst and it was applied to VRFB. The well-oriented 3D dendrite structure of the PtD/C catalyst showed high catalytic activity in formic acid oxidation reaction and vanadium reduction reaction. As a result, the conversion ratio of electrolyte using the PtD/C was 2.73 mol g-1 h-1, which was higher than that of 1.67 mol g-1 h-1 of Pt/C prepared by the polyol method. In addition, in the VRFB charging and discharging experiment, the V3.5+ electrolyte produced by the catalytic reaction showed the same performance as the standard V3.5+ electrolyte prepared by the electrolytic method, thus proving that it can be used as an electrolyte for VRFB.

Electrochemical Properties of Gel Polymer Electrolyte including Zinc Acetate Dihydrate for Zinc-Air Batteries (아연-공기 전지용 아세트산 아연 이수화물을 첨가한 고분자 전해질의 전기화학적 특성)

  • Hui Seo Kim;Dong Yun Lee;Yong Nam Jo
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.550-557
    • /
    • 2023
  • In zinc-air batteries, the gel polymer electrolyte (GPE) is an important factor for improving performance. The rigid physical properties of polyvinyl alcohol reduce ionic conductivity, which degrades the performance of the batteries. Zinc acetate is an effective additive that can increase ionic conductivity by weakening the bonding structure of polyvinyl alcohol. In this study, polymer electrolytes were prepared by mixing polyvinyl alcohol and zinc acetate dihydride. The material properties of the prepared polymer electrolytes were analyzed by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Also, Electrochemical impedance spectroscopy was used to calculate ionic conductivity. The electrolyte resistances of GPE, 0.2 GPE, 0.4 GPE, and 0.6 GPE were 0.394, 0.338, 0.290, and 0.213 Ω, respectively. In addition, 0.6 GPE delivered 0.023 S/cm high ionic conductivity. Among all of the polymer electrolytes tested, 0.6 GPE showed enhanced cycle life performance and the highest specific discharge capacity of 11.73 mAh/cm2 at 10 mA. These results verified that 0.6 GPE improves the performance of zinc-air batteries.

Effect of Calcination Temperature on Ionic Conductivity of All-solid State Battery Electrolytes (하소 온도가 전고체 전지 전해질의 이온전도도에 미치는 영향)

  • Yu Taek Hong;Ji Min Im;Ki Sang Baek;Chan Gyu Kim;Seung Wook Baek;Jung Hyun Kim
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.71-81
    • /
    • 2024
  • In this study, the electrochemical properties of garnet-structured all-solid-state battery electrolytes (Li6.4La3Zr1.4Ta0.6O12, hereafter LLZTO) were assessed by altering the calcination temperature, while maintaining a consistent sintering duration. Among the various heat treatment conditions employed for sample fabrication, the '700_1100' condition, denoting a calcination temperature of 700℃ and a sintering temperature of 1100℃, resulted in the most exceptional ionic conductivity of 4.89 × 10-4 S/cm and a relative density of 88.72% for the LLZTO material. This is attributed to the low calcination temperature of 700℃, leading to reduced grain size and enhanced cohesiveness, thus resulting in a higher sintered density. In addition, a microstructure similar to the typical sintering characteristics observed in Spark Plasma Sintering (SPS) methods was identified in the SEM analysis results under the '700_1100' condition. Consequently, the '700_1100' heat treatment condition was deemed to optimal choice for enhancing ionic conductivity.

The Effect of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery using Methyl Viologen and TEMPOL Redox Couple (다양한 멤브레인을 적용한 메틸 바이올로겐과 템폴 활물질 기반 수계 유기 레독스 흐름 전지 성능 평가)

  • Park, GyunHo;Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.868-873
    • /
    • 2019
  • In this study, the evaluation of performance of AORFB using methyl viologen and TEMPOL as organic active materials in neutral supporting electrolyte (NaCl) with various membrane types was performed. Using methyl viologen and TEMPOL as active materials in neutral electrolyte solution, the cell voltage is 1.37V which is relatively high value for AORFB. Two types of membranes were examined for performance comparison. First, when using Nafion 117 membrane which is commercial cation exchange membrane, only the charge process occurred in the first cycle and the single cell couldn't work because of its high resistance. However, when using Fumasep anion exchange membrane (FAA-3-50) instead of Nafion 117 membrane, the result was obtained as the totally different charge-discharge graphs. When current density was $40mA{\cdot}cm^{-2}$ and cut off voltage range was from 0.55 V to 1.7 V, the charge efficiency (CE) was 97% and voltage efficiency (VE) was 78%. In addition, the discharge capacity was $1.44Ah{\cdot}L^{-1}$ which was 54% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $10^{th}$ cycle and the capacity loss rate was $0.0015Ah{\cdot}L^{-1}$ per cycle during 50 cycles. Through cyclic voltammetry test, it seems that this difference in the performance between the full cell using Nafion 117 membrane and Fumasep anion exchange membrane came from increasing resistance due to chemical reaction between membrane and active material, not the capacity loss due to cross-over of active material through membrane.

Development of Anode-supported Planar SOFC with Large Area by tape Casting Method (테입캐스팅을 이용한 대면적 (100 cm2) 연료극 지지체식 평판형 고체산화물 연료전지의 개발)

  • Yu, Seung-Ho;Song, Keun-Suk;Song, Hee-Jung;Kim, Jong-Hee;Song, Rak-Hyun;Jung, Doo-Hwan;Peck, Dong-Hyun;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • For the development of low temperature anode-supported planar solid oxide fuel cell, the planar anode supports with the thickness of 0.8 to 1 mm and the area of 25, 100 and $150\;cm^2$ were fabricated by the tape casting method. The strength, porosity, gas permeability and electrical conductivity of the planar anode support were measured. The porosity of anode supports sintered at $1400^{\circ}C$ and then reduced in$H_2$ atmosphere was increased from $45.8\%\;to\;53.9\%$. The electrical conductivity of the anode support was $900 S/cm\;at\; 850^{\circ}C$ and its gas permeability was 6l/min at 1 atm in air atmosphere. The electrolyte layer and cathode layer were fabricated by slurry dip coating method and then had examined the thickness of $10{\mu}m$ and the gas permeability of 2.5 ml/min at 3 atm in air atmosphere. As preliminary experiment, cathode multi-layered structure consists of LSM-YSZ/LSM/LSCF. At single cell test using the electrolyte layer with thickness of 20 to $30{\mu}m$, we achieved $300\;mA/cm^2$ and 0.6V at $750^{\circ}C$

Studies on the Lipid of Aquatic Products (Part 4) On the Flesh Lipid Composition of Cephalopods (수산물의 지질에 관한 연구 (제4보) -두족류의 근육지질성분에 대하여-)

  • HA Bong-Seuk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.59-73
    • /
    • 1982
  • Differences of lipids, especially total lipid composition, fatty acid and sterol composition of the flesh lipids between three species of cephalopods were investigated, since available researches concerning lipids in flesh tissues of the cephalopod are very limited. Extracted total lipid from the flesh tissues were fractionated by silicic acid column chromatography into three lipid classes of neutral lipids, glycolipids and phospholipids. The lipid compositions of total lipid and neutral lipids were estimated by the method of thin layer chromatography and TLC-scanner. The sterol compositions of unsaponifiable matters from total lipid were determined by using thin layer chromatography and gas-liquid chromatography. The fatty acid composition of each lipid class was also determined by gas-liquid chromatography. Total lipid contents of flesh tissues from three species of the cephalopods were 0.5 in Octopus vulgare, 0.8 in Octopus variabilis and $0.6\%$ in Loligo beka based on wet weight, the contents of total fatty acid in total lipid were 19.3, 47.8 and $38.4\%$, and the contents of unsaponifiable matters were 10.9, 18.8 and $41.1\%$, respectively. Total lipid was mainly composed of sterols and polar lipid-pigments as major components in each sample and the proportion of sterols and polar lipid-pigments to total lipid ranged from 27.0 to $35.5\%$ and 38.3 to $63.4\%$, respectively. The other lipid components of total lipid, e.g. triglycerides, free fatty acids, and carbohydrate-esterified sterols were determined as a minor components. The major component fatty acid in total lipid was palmitic acid and additionaly it chiefly consisted of the other unsaturated acids such as oleic, linoleic, octadecatetraenoic and eicosapentaenoic acid as major components of the acid. The compositions of sterol in three species of cephalopod were found to contain mainly cholesterol for its proportion to total sterols was 82.4 to $89.1\%$. However the other sterols such as 22-dehydrocholesterol and 24-methylenecholesterol were determined in addition to cholesterol as a minor components. The result of fractional composition of lipid class in total lipid was that total lipid had large .amount of polar lipid and small amount of nonpolar lipid i, e, neutral lipid in each sample, and the contents of phospholipid were higher than that of glycolipid in polar lipid. Neutral lipid was mainly composed of free sterol as major components in each sample and its proportion of free sterols to total neutral lipid was 50.0 to $70.5\%$. The other lipid components of neutral lipid showing similar in quantity, esterified sterols, free fatty acids and triglycerides were determined as a minor components. The major components fatty acid in neutral lipid were palmitic, oleic and hexadecadienoic acid. Palmitic acid was the most abundant and additionaly oleic, linoleic, octadecatetraenoic and myristic acid were the major component fatty acid in glycolipid. But, especially, glycolipid of Loligo beka contained a higher amount of arachidonic acid which also consists of major component in addition to those of acids. Palmitic acid was the most abundant and additionaly, oleic, linoleic and octadecatetraenoic acid were the major component fatty acids in phospholipid.

  • PDF

Electrochemical Properties of LiMPO4(M = Fe, Mn) Synthesized by Sol-Gel Method (졸-겔법에 의해 제조된 LiMPO4(M = Fe, Mn) 양극 활물질의 전기화학적 특성)

  • Kim, Jae-Kwang;Baek, Dong-Ho;Shin, Yong-Jo;Ahn, Jou-Hyeon;Seo, Yang-Gon;Kim, Chi-Su;Yoon, Seok-Jun;Cho, Myung-Hun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.120-124
    • /
    • 2008
  • Carbon-coated $LiFePO_4$ and $LiMn_{0.4}Fe_{0.6}PO_4$ cathode materials for lithium batteries were synthesized by a sol-gel method. X-ray diffraction and scanning electron microscopy data showed that the cathode materials are pure crystalline and are surrounded by porous carbon. The initial discharge capacities of $LiFePO_4$ and $LiMn_{0.4}Fe_{0.6}PO_4$ with the liquid electrolyte of 1M $LiPF_6$ in EC/DMC are 132 mAh/g and 145 mAh/g, respectively, at current density of 0.1 C-rate. $LiFePO_4$ and $LiMn_{0.4}Fe_{0.6}PO_4$ with an electrospun polymer-based electrolyte exhibit initial discharge capacities of 114 and 130 mAh/g at 0.1 C-rate at room temperature, respectively.

Structure and Electrochemical Characterization of LiNi0.5Mn0.3Co0.2O2 as the Cathode Material Synthesized by Simple-combustion Method (단순 연소법으로 합성한 LiNi0.5Mn0.3Co0.2O2 양극 활물질의 구조 분석 및 전기화학적 특성 연구)

  • Cho, Sung-Woo;Ju, Jeong-Hun;Ryu, Seong-Hyeon;Ryu, Kawng-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2010
  • $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ active material was prepared by simple-combustion method and investigated as the cathode material for li-ion battery. The structural characterization was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The XRD patterns of $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ sample was indicated a phase of layered hexagonal structure. The size of particles has not uniform diameters ranging from 100 to 300 nm. The electrochemical performance of the $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ was measured by Cyclic Voltammetry and galvanostatics. The $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ shows the discharge capacity of ~162 mAh/g in the range of 2.8 to 4.3 V at the first cycle.