• Title/Summary/Keyword: 질소 흡착

Search Result 374, Processing Time 0.021 seconds

Fly Ash Application Effects on CH4 and CO2 Emission in an Incubation Experiment with a Paddy Soil (항온 배양 논토양 조건에서 비산재 처리에 따른 CH4와 CO2 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong;Jung, Jae-Woon;Yoon, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.853-860
    • /
    • 2012
  • To estimate potential use of fly ash in reducing $CH_4$ and $CO_2$ emission from soil, $CH_4$ and $CO_2$ fluxes from a paddy soil mixed with fly ash at different rate (w/w; 0, 5, and 10%) in the presence and absence of fertilizer N ($(NH_4)_2SO_4$) addition were investigated in a laboratory incubation for 60 days under changing water regime from wetting to drying via transition. The mean $CH_4$ flux during the entire incubation period ranged from 0.59 to $1.68mg\;CH_4\;m^{-2}day^{-1}$ with a lower rate in the soil treated with N fertilizer due to suppression of $CH_4$ production by $SO_4^{2-}$ that acts as an electron acceptor, leading to decreases in electron availability for methanogen. Fly ash application reduced $CH_4$ flux by 37.5 and 33.0% in soils without and with N addition, respectively, probably due to retardation of $CH_4$ diffusion through soil pores by addition of fine-textured fly ash. In addition, as fly ash has a potential for $CO_2$ removal via carbonation (formation of carbonate precipitates) that decreases $CO_2$ availability that is a substrate for $CO_2$ reduction reaction (one of $CH_4$ generation pathways) is likely to be another mechanisms of $CH_4$ flux reduction by fly ash. Meanwhile, the mean $CO_2$ flux during the entire incubation period was between 0.64 and $0.90g\;CO_2\;m^{-2}day^{-1}$, and that of N treated soil was lower than that without N addition. Because N addition is likely to increase soil respiration, it is not straightforward to explain the results. However, it may be possible that our experiment did not account for the substantial amount of $CO_2$ produced by heterotrophs that were activated by N addition in earlier period than the measurement was initiated. Fly ash application also lowered $CO_2$ flux by up to 20% in the soil mixed with fly ash at 10% through $CO_2$ removal by the carbonation. At the whole picture, fly ash application at 10% decreased global warming potential of emitted $CH_4$ and $CO_2$ by about 20%. Therefore, our results suggest that fly ash application can be a soil management practice to reduce green house gas emission from paddy soils. Further studies under field conditions with rice cultivation are necessary to verify our findings.

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 여과습지의 초기운영단계 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.278-283
    • /
    • 2003
  • This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.

Phosphorus Fractionations in Sediment of Mankyung and Dongjin River (만경강과 동진강 주요 지점 하천토사 중 형태별 인의 함량)

  • Han, Kang-Wan;Son, Jae-Kwon;Cho, Jae-Young;Kim, Hyo-Kyeong;Hwang, Seon-Ah
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.319-325
    • /
    • 2005
  • Sediments of Mankyung and Dongjin river were examined on the physico-chemical properties and phosphorus fractionations. The content of total-P in sediment of Mankyung river ranged from 290.1 to 405.4 mg/kg (average = 363.4 mg/kg), while that in sediment of Dongjin river ranged from 304.1 to 431.7 mg/kg (average = 353.6 mg/kg). In both rivers, the total-P was highest in June to September. It is presumed that surficial sediment in arable land flowed into the rivers with rainfall-runoff. Phosphorus fractionations in Mankyung and Dongjin river were apatite-P 52.1% and 42.7%, residual-P 27.3% and 34.2%, nonapatite inorganic-P 18.1% and 22.5%, and adsorbed-P 0.6% and 0.6%, respectively. Adsorbed-P in sediment was the most scarcity fraction. It thus appears that adsorbed phosphorus was not effected in aquatic ecosystem. But nonapatite inorganic-P would be highly released under changes of redox condition and pH in aquatic ecosystem.

Adsorption Stnlctures of Benzene and Pyridine on a $Si(5\;5\;12)-2{\times}1$ ($Si(5\;5\;12)-2{\times}1$ 표면에 벤젠과 피리딘의 결함구조)

  • Jang S. H.;Oh S.;Hahn J. R.;Jeong H.;Jeong S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.50-56
    • /
    • 2006
  • We investigated the adsorption of benzene and pyridine on $Si(5\;5\;12)-2\times1$ at 80 K by using variable-low temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The benzene molecule most strongly binds to two adatoms on the D3 and D2 units in a tilted butterfly configuration, which consists of $di-\sigma$ bonds between C atoms and Si adatoms and two C=C double bonds in the benzene molecule Pyridine molecules interact with adatom(s) on the D2 and D3 units through both Si-N dative bonding and $di-\sigma$ bonds. The dative bonding through the lone pair electrons of N atom produces a vertical configuration (pyridine-like), which is more stable than $di-\sigma$ bonds $Di-\sigma$ bonds can be formed either through Si-N1 and Si-C4 or Si-C2 and Si-C5.

Development of 10 μmol/mol Hydrogen Sulfide Primary Standard Gas for Odor Measurements (악취측정용 10 μmol/mol 황화수소 표준가스 개발)

  • Kim, Yong-Doo;Bae, Hyun-Kil;Kim, Dalho;Oh, Sang-Hyub;Lee, Jin Hong;Lee, Sangil
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.46-51
    • /
    • 2018
  • Hydrogen sulfide from landfill and sewage treatment plant is a major odor component and causes many civil petitions. Rapidly developing industries release hydrogen sulfide, an odorous gas, to the atmosphere. This study aims to develop a $10{\mu}mol/mol$ concentration level hydrogen sulfide primary standard gas for odor measurement. The hydrogen sulfide gas was prepared at a nominal concentration of $10{\mu}mol/mol$ in nitrogen using the gravimetric method described in ISO 6142. Replicate standard gases were produced in 4 aluminium cylinders, and their concentrations were verified by GC-AED. The uncertainty of production was less than 0.50 %, and the variation of the 4 replicates was 0.22 %. The wall adsorption of hydrogen sulfide in cylinders was 0.10 % at 1500 psi, and the concentration was estimated to be long-term stable for one year. The relative expanded uncertainty of the preparation consistency, adsorption and long-term stability of this hydrogen sulfide standard gas was less than 1.05 % (95 % of confidence level, k=2).

Studies on Removal of Water Pollutants by Aquatic Plants II. Removal of Water Polluted Nutrients and Heavy Metals by Water Hyacinth (수생식물(水生植物)을 이용(利用)한 수질오염원제거(水質汚染源除去)에 관(關)한 연구(硏究) - 제2보(第2報) 부레옥잠의 영양염류(營養鹽類) 및 중금속(重金屬) 제거효과(除去效果))

  • Lee, Kyu-Seung;Kim, Moon-Kyu;Pyon, Jong-Yeong;Lee, Jong-Sik
    • Korean Journal of Weed Science
    • /
    • v.5 no.2
    • /
    • pp.149-154
    • /
    • 1985
  • Removal of water pollutants by water hyacinth was examined with two nutrients, $NO_3$-N, $PO_4$-P and four heavy metals, Cu, Pb, Cd, Cr under laboratory conditions. $NO_3$-N was reduced to 0.7, 0.9 and 1.2 ppm, and 0.1, 0.2 and 0.5 ppm in $NO_4$-P from 10, 25 and 50 ppm 3 days after treatment, respectively. Among heavy metals Cu and Pb were removed faster and higher than Cd and Cr and also amount of heavy metals absorbed by water hyacinth was higher in the order of Cu > Pb > Cr > Cd. Distribution of heavy metals in this plant was higher in roots than in leaves and amount absorbed in roots was related to the treated concentrations. The harmful effect on growth of water hyacinth was observed in Cu and Cd.

  • PDF

CO Oxidation Over Pt Supported on Al-Ce Mixed Oxide Catalysts with Different Mole Ratios of Al/(Al+Ce) (서로 다른 몰비의 Al/(Al+Ce)를 가진 Al-Ce 혼합산화물에 담지된 Pt 촉매 상에서의 일산화탄소 산화반응)

  • Park, Jung-Hyun;Cho, Kyung-Ho;Kim, Yun-Jung;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.166-174
    • /
    • 2011
  • The xAl-yCe oxide catalysts with different mol ratios of Al/(Al+Ce) were prepared by a co-precipitation method and Pt supported on xAl-yCe oxide catalysts were synthesized by an incipient wetness impregnation method. The catalysts were characterized by X-ray Diffraction (XRD), $N_2$ sorption, and $H_2$/CO-temperature programmed reduction ($H_2$/CO-TPR) to correlate with catalytic activities in co oxidation. Among the catalysts studied here, Pt/1Al-9Ce oxide catalyst showed the highest activity in dry and wet reaction conditions and the catalytic activity showed a typical volcano-shape curve with respect to Al/(Al+Ce) mol ratio. When the presence of 5% water vapor in the feed, the temperature of $T_{50%}$ was shifted ca. $30^{\circ}C$ to lower temperature region than that in dry condition. From CO-TPR, the desorption peak of $CO_2$ on Pt/1Al-9Ce oxide catalyst showed the highest value and well correlated the catalytic performance. It indicates that the Pt/1Al-9Ce oxide catalyst has a large amount of active sites which can be adsorbed by co and easy to supplies the needed oxygen. In addition, the amount of pentacoordinated $Al^{3+}$ sites obtained through $^{27}Al$ NMR analysis is well correlated the catalytic performance.

Synthesis of Butenes through Butanol Dehydration over Catalyst Prepared from Water Treatment Sludge (정수 슬러지로부터 제조된 촉매 상에서 부탄올 탈수반응을 통한 부텐 제조)

  • Kim, Goun;Bae, Junghyun;Choi, Hyeonhee;Lee, Choul-Ho;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.121-126
    • /
    • 2015
  • The objective of this study is to evaluate the catalytic potential of the porous material prepared from water treatment sludge. The textural properties of the catalyst were studied using $N_2$ adsorption and desorption isotherms, scanning electron microscope, and X-ray diffraction. The pellet-type catalyst prepared using water treatment sludge is determined to be a material that contains mesopores as well as micropores. The specific surface area of the catalyst is $157m^2/g$. Acidic characteristics of the catalyst are analyzed by temperature-programmed desorption of ammonia and infrared spectroscopy of adsorbed pyridine. 2-Butanol dehydration reaction was carried out in a fixed bed catalytic reactor. Yields of 1-butene, trans-2-butene, and cis-2-butene at $350^{\circ}C$ were 25.6 wt%, 19.2 wt%, and 29.9 wt%, respectively. This catalytic activity of the catalyst based on water treatment sludge in 2-butanol dehydration is due to the acid sites composed of Bronsted acid sites and Lewis acid sites. It was confirmed that the catalyst based on water treatment sludge can be utilized to produce $C_4$ olefin through butanol dehydration.

A Study on Removal of Organism and Nitrogen, Phosphorus in Wastewater Treatment Process Using Nitrifier Activated Reactor (질산화균 활성화조를 이용한 하수처리 공정에서의 유기물 및 질소, 인 제거에 관한 연구)

  • Dong, Young-tak;Seo, Dong-whan;Bae, Yu-jin;Park, Ju-seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.727-735
    • /
    • 2007
  • The use of water by cities is increasing owing to industrialization, the concentration of population, and the enhancement of the standard of living. Accordingly, the amount of waste water is also increasing, and the degree of pollution of the water system is rising. In order to solve this problem, it is necessary to remove organisms and suspended particles as well as the products of eutrophication such as nitrates and phosphates. This study developed a high-end treatment engineering solution with maximum efficiency and lower costs by researching and developing a advanced treatment engineering solution with the use of Biosorption. As a result, the study conducted a test with a $50m^3/day$ Pilot Scale Plant by developing treatment engineering so that only the secondary treatment satisfies the standard of water quality and which provided optimal treatment efficiency along with convenient maintenance and management. The removal of organisms, which has to be pursued first for realizing nitrification during the test period, was made in such a way that there would be no oxidation by microorganisms in the reactor while preparing oxygen as an inhibitor for the growth of microorganism in the course of moving toward the primary settling pond. The study introduced microorganisms in the endogeneous respiration stage to perform adhesion, absorption, and filtering by bringing them into contact with the inflowing water with the use of a sludge returning from the secondary settling pond. Also a test was conducted to determine how effective the microorganisms are as an inner source of carbon. The HRT(Hydraulic Retention Time) in the nitrification tank (aerobic tank) could be reduced to two hours or below, and the stable treatment efficiency of the process using the organisms absorbed in the NAR reactor as a source of carbon could be proven. Also, given that the anaerobic condition of the pre-treatment tank becomes basic in the area of phosphate discharge, it was found that there was excellent efficiency for the removal of phosphate when the pre-treatment tank induced the discharge of phosphate and the polishing reactor induced the uptake of phosphate. The removal efficiency was shown to be about 94.4% for $BOD_5$. 90.7% for $COD_{Cr}$ 84.3% for $COD_{Mn}$, 96.0% for SS, 77.3% for TN, and 96.0% for TP.

Microwave-Syntheses of Zeolitic Imidazolate Framework Material, ZIF-8 (마이크로파에 의한 Zeolitic Imidazolate Framework 물질, ZIF-8의 합성)

  • Park, Jung-Hwa;Park, Seon-Hye;Jhung, Sung-Hwa
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.553-559
    • /
    • 2009
  • One of zeolitic imidazolate framework materials (ZIF), ZIF-8, has been synthesized with microwave irradiation and conventional electric heating at $140{\sim}180^{\circ}C}$. ZIFs are porous crystalline materials and are similar to metal organic framework (MOF) materials because both ZIFs and MOFs are composed of both organic and metallic components. ZIFs are very stable and similar to zeolites because ZIFs have tetrahedral networks. ZIF-8, with a decreased crystal size, can be synthesized rapidly with microwave irradiation. The microwave synthesis of ZIF-8 is completed in 4 h at $140{^{\circ}C}$ and the reaction time is decreased by about 5 times compared with the conventional electric heating. The ZIF-8 obtained by microwave heating has larger surface area and micropore volume compared with the ZIF-8 synthesized with conventional electric heating. It can be confirmed that ZIF-8s show type-I adsorption isotherms, explaining the microporosity of the ZIF-8s. Based on FTIR and TGA results, it can be understood that the ZIF-8s have similar bonding and thermal characteristics irrespective of heating methods such as microwave and conventional heating.