• Title/Summary/Keyword: 질소처리

Search Result 2,620, Processing Time 0.028 seconds

Modeling of SBR Process for Nitrogen ]Removal Via Quadratic Polynomial (이차다항식을 이용한 질소제거 SBR공정의 모델링)

  • 김동원;박장현;이호식;박영환;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.145-148
    • /
    • 2003
  • 본 논문에서는 이차다항식을 이용하여 생화학적인 공정의 모델링을 행한다. SBR 반응조에서 질소제거를 위한 수처리 공정이 제시되었으며, 이 공정의 ORP값을 모델링하고 동정하기 위해 서로 다른 형태의 선형모델이 소개되었으며 결과를 비교하고 분석한다 시뮬레이션 결과로부터 합리적이고 효율적으로 모델링 될 수 있음을 검증한다.

  • PDF

Development of Biological Denitrification Process using Sulfur for the Wastewater Containing Low BOD (저농도 BOD함유 폐수의 황(S)을 이용한 생물학적 탈질공정 개발 (SPAD 공정))

  • 광주과학기술원, 한국과학기술원;한국과학기술원;동명산업
    • Environmental engineer
    • /
    • v.19 s.186
    • /
    • pp.66-73
    • /
    • 2002
  • 우리나라 하수의 특성이 유기물 농도가 질소 농도에 비하여 매우 낮기 때문에 외국의 종속영양 탈질 공법을 그대로 적용하기가 힘들며 적용한다 할지라도 외부탄소원을 넣어야 하므로 경제적인 처리는 불가능하다. 산업폐수의 경우에 있어서도 유기물농도가 질소농도에 비하여 낮은 폐수의 경우는 값비싼 외부탄소원을 넣어주어야 한다. 따라서 폐수 특성에 맞는 효율적이고 경제적인 질소화합물 제거 기술의 개발은 불가피하다. 따라서 종속영양탈질공정의 경제성 문제 및 기존의 황탈

  • PDF

Development of Biological Denitrification Process Using Sulfur for the Wastewater Containing Low BOD (저농도 BOD함유 폐수의 황(S)을 이용한 생물학적 탈질공정 개발 (SPAD 공정))

  • 김인수;오상은;범민수;이성택;이창수;김민수
    • Environmental engineer
    • /
    • s.183
    • /
    • pp.70-77
    • /
    • 2001
  • 우리나라 하수의 특성이 유기물 농도가 질소농도에 비하여 매우 낮기 때문에 외국의 종속영양 탈질 공법을 그대로 적용하기가 힘들며 적용한다 할지라도 외부탄소원을 넣어야 하므로 경제적인 처리는 불가능하다. 산업폐수의 경우에 있어서도 유기물농도가 질소농도에 비하여 낮은 폐수의 경우는 값비싼 외부탄소원을 넣어주어야 한다. 따라서 폐수 특성에 맞는 효율적이고 경제적인 질소 화합물 제거 기술의 개발은 불가피하다. 따라서 종속영양탈질공정의 경제성 문제 및 기존의 황탈

  • PDF

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads : Effect of Water Back-flushing Period and Time (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리 : 물 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Park, Sung Woo;Byun, Hongsik
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.267-277
    • /
    • 2013
  • The effect of water back-flushing period (FT) and water back-flushing time (BT) was compared with the previous study of nitrogen back-flushing in viewpoints of resistance of membrane fouling ($R_f$), permeate flux (J), and total permeate volume ($V_T$) in hybrid process of tubular ceramic microfiltration and PES (polyethersulfone) beads loaded $TiO_2$ photocatalyst for advanced drinking water treatment. As FT decreasing, Rf decreased, but J and $V_T$ increased. Turdity treatment efficiency was the maximum at NBF (no back-flushing) and increased a little as FT decreasing in both water and nitrogen back-flushing. Organic matter treatment efficiency was the maximum at FT 4 min in water back-flushing, but increased as FT decreasing in nitrogen back-flushing. As BT increasing, Rf and resistance of reversible membrane fouling ($R_{rf}$) decreased, but J and $V_T$ increased. The turdity treatment efficiency was almost constant beyond 98% in water back-flushing, but increased as BT increasing except NBF in nitrogen. The organic matter treatment efficiency was the maximum at BT 6 sec in water back-flushing, but increased as BT increasing except NBF in nitrogen. The $V_T$ was the maximum at BT 30 and FT 2 min, and optimal condition was BT 30 sec per FT 2 min in this experimental range.

Application of Phytoremediation for Total Nitrogen and Total Phosphorus Removal from Treated Swine Wastewater and Bio-methane Potential of the Biomass (돈분뇨 처리수 유래 질소와 인 제거를 위한 식물정화법 활용과 바이오매스의 바이오메탄 잠재성 연구)

  • Sudiarto, Sartika Indah Amalia;Choi, Hong Lim;Renggaman, Anriansyah
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.21-31
    • /
    • 2015
  • The aim of this study is to determine the removal efficiency of total nitrogen and phosphorus from treated swine wastewater by Phragmites australis and Miscanthus sacchariflorus var Geode Uksae-1, and to determine its biomass total energy value and biomethane potential. Plants were grown with a bedding mixture either soil and sand or soil, sand, and bioceramic. Treeated swine wastewater with Total nitrogen (TN) and Total phosphorus (TP) of 222.78 mg/L and 66.11 mg/L, respectively, was utilized. The TN and TP removal is higher in the bio-ceramic-soil-sand bedding media treatment. The highest TN removal of 96.14% was performed by Miscanthus sacchariflorus var Geode Uksae-1, but the elemental analysis shows that Phragmites australis contains more nitrogen than Miscanthus sacchariflorus var Geode Uksae-1, indicating higher nitrogen uptake. The highest TP removal of 98.12% was performed by Phragmites australis. The cellulose content of the plant grown with the bioceramic-soil-sand bedding was approximately 3-6% higher than that of the plant grown in the soil-sand bedding. Different growing substrates may have an effect on the fiber content of plants. The biomethane potential of the produced biomass of the plants was between 57.01 and $99.25L-CH_4/kg$ VS. The lignin content is believed to inhibit the breakdown of plant biomass, resulting in the lowest methane production in the Phragmites australis grown in the soil-sand bedding media.

The Effect of Composted Liquid Manure on the Growth of Zoysiagrass (가축분뇨 액비의 시비에 따른 한국 잔디의 생육에 미치는 영향)

  • Ham, Suon-Kyu;Kim, Young-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.4
    • /
    • pp.45-53
    • /
    • 2014
  • This study was conducted to evaluate the effect of developed composted liquid manure(DSCB), which was produced by adding N, P, and K to composted liquid manure(SCB), on the growth of zoysiagrass. Two different N sources used in DSCB were ammonium sulfate(DSCB-A) and urea(DSCB-U), respectively. Fertilizer treatments were designed as follows; non-fertilizer (NF), control (CF; chemical fertilizer), DSCB-Al($200mlm^{-2}$ DSCB-A), DSCB-A2($250mlm^{-2}$ DSCB-A), DSCB-U ($250mlm^{-2}$ DSCB-U) and CF+SCB(CF+$250mlm^{-2}$ SCB). In zoysiagrass, turf color index, chlorophyll index, dry weight and nutrient content were measured. Turf color index and chlorophyll index in DSCB and SCB treatment were increased by 1~3% and 14~28% than those of NF, respectively, and in DSCB-A1, DSCB-A2 and CF+SCB increased by 7~12% than those of CF. As applied with DSCB and SCB, the dry weight of DSCB-A1 and DSCB-A2 was increased by 25% and 19% in than CF, respectively and their nitrogen uptake by 19% and 6%. Evaluated with turf quality and growth, DSCB-A1 was the best and the most efficient in all treatments. These results indicated that application of DSCB-A1 promoted turf quality and growth of zoysiagrass by stimulating a nitrogen uptake, so that it was expected to replace to chemical fertilizers.

Effects of Incorporation of Green Manure Crops on the Growth of Watermelonand Soil Nitrate Nitrogen Concentration (풋거름작물의 토양환원이 수박의 생육 및 토양의 질산염 농도에 미치는 영향)

  • Lim, Tae-Jun;Park, Jin-Myeon;Le, Seong-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.28-33
    • /
    • 2018
  • BACKGROUND: In this study, we evaluated the effects of soil incorporation of hairy vetch (HV) or ryeas a green manure on the growth and yields of watermelon and soil nitrate nitrogen in a green house.. METHODS AND RESULTS: HV and rye were cultivated for 151 days after sowing on October 30th and incorporated into soil before transplanting watermelon. The amount of N added by soil incorporation of HV and rye were 79 kg/ha and 88 kg/ha, respectively. Five different N treatments for each of HV and rye were included as follows: green manure, green manure with urea at 25%, 50%or 75%, and 100% ureafor the N recommendation rate. The growth and fruit yield of watermelon were not different among the treatments of both HV and rye. Soil nitrate N content at both HV and rye treatments decreased continuously with the lapse of days after planting (DAP) and was lowest at 75 DAP: 44 mg/kg and 52 mg/kg the for the HV and rye treatment without urea, respectively. CONCLUSION: These results indicate that the N mineralized from the soil incorporated HV or rye accounts for an important portion of N available for the growth and fruit yield of watermelon. It can be suggested that the green manures, comparable to ureacould ensure the yield of watermelon, if soil nitrate N content isabove 40 mg/kg by soil incorporation of HV and rye during watermelon cultivation. However, further studies on the relationship between soil nitrate N content during cultivation periods and the fruit yield of watermelon are required.

Effects of Two Amino Acid Fertilizers on Growth of Creeping Bentgrass and Nitrogen Uptake (아미노산 비료가 크리핑 벤트그래스의 생육과 질소 흡수에 미치는 영향)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lee, Jae-Pil;Hwang, Young-Soo;Lee, Kyu-Seong
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.246-252
    • /
    • 2014
  • This study was conducted to evaluate the effects of two amino acid fertilizers on the growth of creeping bentgrass and N uptake. Fertilizer treatments were designed as follows; non-fertilizer (NF), control (CF), recommended amount (ALF), double amount (2ALF) of amino acid liquid fertilizer (AaLF), recommended amount (ASLF) and double amount (2ASLF) of amino acid liquid fertilizer contained with saponin (AaSLF). Turf quality of treatments of AaLF and AaSLF such as turf color index, chlorophyll index and root length was similar to the treatment of CF. Dry weight and content, uptake and availability of N were investigated highest in the 2ALF and 2ASLF. These results suggested that foliar application of AaLF and AaSLF was enhanced turf quality and growth of creeping bentgrass by stimulating uptake and availability of N.

A Study on the Mitigation of Nitrous Oxide emission with the Horticultural Fertilizer of Containing Urease Inhibitor in Hot Pepper and Chinese Cabbage Field (고추와 배추 재배지에서 요소분해효소 억제제 함유 원예용 비료 시용에 따른 아산화질소 배출 저감 효과)

  • Ju, Ok Jung;Lim, Gap June;Lee, Sang Duk;Won, Tae Jin;Park, Jung Soo;Kang, Chang Sung;Hong, Soon Sung;Kang, Nam Goo
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.235-242
    • /
    • 2018
  • BACKGROUND: About 81% of nitrous oxide ($N_2O$) emissions from agricultural land to the atmosphere is due to nitrogen (N) fertilizer application. Mitigation of $N_2O$ emissions can be more effective in controlling biochemical processes such as nitrification and denitrification in the soil rather than decreasing fertilizer application. The use of urease inhibitors is an effective way to improve N fertilizer efficiency and reduce $N_2O$ emissions. Several compounds act as urease inhibitors, but N-(n-butyl) thiophosphoric triamide (NBPT) has been used worldwide. METHODS AND RESULTS: Hot pepper and chinese cabbage were cultivated in five treatments: standard fertilizer of nitrogen-phosphorus-potassium(N-P-K, $N-P_2O_5-K_2O$: 22.5-11.2-14.9 kg/ha for hot pepper and $N-P_2O_5-K_2O$: 32.0-7.8-19.8 kg/ha for chinese cabbage), no fertilizer, and NBPT-treated fertilizer of 0.5, 1.0, and 2.0 times of nitrogen basal application rate of the standard fertilizer, respectively in Gyeonggi-do Hwaseong-si for 2 years(2015-2016). According to application of NBPT-treated fertilizer in hot pepper and chinese cabbage, $N_2O$ emission decreased by 19-20% compared to that of the standard fertilizer plot. CONCLUSION: NBPT-treated fertilizer proved that $N_2O$ emissions decreased statistically significant in the same growth conditions as the standard fertilization in the hot pepper and chinese cabbage cultivated fields. It means that NBPT-treated fertilizer can be applied for N fertilizer efficiency and $N_2O$ emissions reduction.

Evaluation of Pollutant Removal Efficiency in Environmentally Friendly Full-scale Constructed Wetlands for Treating Domestic Sewage during Long-term Monitoring (장기 모니터링을 통한 환경친화형 인공습지 하수처리장의 수질정화효율 평가)

  • Seo, Dong-Cheol;Jo, In-Seong;Lim, Seok-Cheon;Lee, Byeong-Ju;Park, Seong-Kyu;Cheon, Yeong-Seok;Park, Jong-Hwan;Lee, Hong-Jae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.97-105
    • /
    • 2009
  • A constructed wetland which was composed of aerobic and anaerobic areas was evaluated for 3 years to effectively treat the sewage produced in farming and fishing communities. For 3 years in a constructed wetland, biochemical oxygen demand(BOD), chemical oxygen demand(COD), suspended solids(SS), total nitrogen(T-N), and total phosphorus(T-P) in effluent were 0.2${\sim}$11.8, 1.0${\sim}$41.9, 1.1${\sim}$6.5, 4${\sim}$60 and 0.02${\sim}$3.51 mg/L, respectively. Removal rate of BOD, COD and SS in effluent were 97, 92 and 99%, respectively, in the third year. As time goes by, removal rate of T-N and T-P in treated water in aerobic area and effluent were gradually increased in a constructed wetland. In the third year, removal rate in effluent were 62 and 73%, respectively. By the seasons, removal rate of BOD, COD, SS, T-N and T-P were 97${\sim}$98, 87${\sim}$91, 99, 43${\sim}$61 and 76${\sim}$86%, respectively. Removal rate of BOD, COD, SS and T-P were not affected by the seasons, but that of T-N in winter and spring were decreased than the other seasons.