• 제목/요약/키워드: 질소산화물 및 매연 배출물

검색결과 12건 처리시간 0.025초

직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향 - 유채유를 중심으로 - (Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DI Diesel Engine - Using Rape Oil -)

  • 임재근;최순열;김석준;조상곤
    • 해양환경안전학회지
    • /
    • 제14권1호
    • /
    • pp.83-87
    • /
    • 2008
  • 산유국으로부터 에너지 독립을 하고 대기오염방지를 위한 배기배출물을 저감시키기 위하여 대체연료에 많은 관심을 가지고 있다. 폐유나 새로운 식물성 기름과 동물성 기름으로부터 생성할 수 있는 바이오디젤유가 압축점화기관인 디젤기관에 구조적인 변화없이 사용될 수 있다. 이 논문에서는 4행정 직접분사식 디젤기관을 이용하여 순수 디젤유와 바이오디젤 혼합유(바이오디젤 10% 및 20% 함유)의 연료소비율과 배기배출물에 미치는 영향을 제시했으며, 특히 실험에 사용된 바이오디젤 연료는 우리 실험실에서 유채유로부터 직접 생산되었다. 이 연구 결과 바이오디젤 혼합유가 디젤유 보다 연료소비율과 질소산화물은 약간 증가 되었고 일산화탄소와 매연은 상당히 감소되었다.

  • PDF

바이오디젤 혼합연료를 적용한 승용디젤엔진의 성능 및 배출물 저감특성 (Engine performance and emission reduction characteristics of biodiesel blended diesel fuel in a passenger car diesel engine)

  • 조시기
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.181-185
    • /
    • 2014
  • 본 논문은 카놀라 바이오디젤 혼합연료를 승용디젤엔진에 적용하였을 때 나타나는 연소 및 배기배출물 특성에 관한 연구이다. 본 연구에서는 카놀라 바이오디젤을 20%, 40%를 ULSD 80%, 60%와 체적비로 혼합한 혼합연료를 사용하여 ULSD 결과 데이터와 비교하였다. 엔진 회전속도, 엔진부하, 연료분사압력 변화를 실험변수로 사용하였으며. 카놀라 바이오 디젤의 혼합비가 증가 할수록 NOx 배출량은 증가하였지만, Soot 배출량은 감소하는 결과를 나타내었다. 또한 Soot 배출량은 낮은 연료분사압력에서 높은 배출량을 보였다.

물혼합 연료 및 EGR의 조합에 의한 디젤기관의 질소산화물과 매연미립자 동시저감 기술에 관한 연구 (Technology for Reducing NOx and Soot Particulate using EGR with Water Emulsified Fuel in Diesel Engines)

  • 박권하;박태인;김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권4호
    • /
    • pp.356-363
    • /
    • 1997
  • Many research works have been carried out to investigate the factors governing the performance of diesel engine. The area of the study has been focused on reducing both of NOx and smoke because of many difficulties to reduce them simultaneously in diesel engines. One of the efforts is an application of EGR technology to reduce NOx emission, which is very effective, but increases other emissions and makes fuel economy worse. In order to solve the problem, EGR is employed with water emulsified fuel and tested in this paper. Emulsified fuel is produced by centrifugal mixer and the amount of water is controlled by water injector and pulse generator, and EGR rate is controlled with 6-step control valve. The chamber pressure, fuel consumption and emissions are measured with various values of both EGR and water mixing rate, The results show that NOx emission is reduced much rather and smoke is also reduced simultaneously.

  • PDF

박용 디젤기관의 $NO_x$ 및 매연 배출물에 미치는 스크러버형 EGR 시스템 재순환배기의 영향에 관한 연구 (A Study on Effects of Recirculated Exhaust Gas upon $NO_x$ and Soot Emissions of a Marine Diesel Engine with Scrubber EGR System)

  • 배명환;하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.70-78
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of ;$NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The purpose of the present study is to develop the EGR control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal apparatus with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector is made up 144 nozzles with 1.0mm in diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration obtained by the intake air flow and the oxygen concentration in the recirculated exhaust gas, and the exhaust oxygen concentration measured in exhaust manifold are used to analyse and discuss the influences of EGR on NOx and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions decrease and soot emissions increase owing to the drop of intake oxygen concentration and exhaust oxygen concentration as EGR rate rises. Also, one can conclude that it is sufficient for the scrubber EGR system with a novel diesel soot removal apparatus to reduce $NO_x$ emissions, but not to reduce soot emissions.

  • PDF

스크러버형 EGR시스템 디젤기관의 성능 및 배기 배출물에 미치는 재순환 배기온도의 영향 (Effect of Recirculated Exhaust Gas Temperature on Performance and Exhaust Emissions in Diesel Engines with Scrubber EGR System)

  • 배명환;하태용;류창성;하정호;박재윤
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.75-82
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions. And a novel diesel soot-removal device with a cylinder-type scrubber which has five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to study the effect of intake mixture temperature, a intake mixture heating device which has five heating coils is made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that NOx emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature.

  • PDF

바이오디젤유를 사용하는 간접분사식 디젤기관의 내구 및 배기 특성 (The Durability and Exhaust Emission Characteristics of an IDI Diesel Engine Using Biodiesel Fuel)

  • 유경현;오영택
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.115-122
    • /
    • 2006
  • To evaluate the durability characteristics of in-direct injection diesel engine using BDF 20(a blend of 20% biodiesel fuel and 80% diesel fuel in volume), an IDI diesel engine used to commercial vehicle was operated on BDF 20 for 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to investigate the combustion characteristics, engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. From the results, the combustion variations such as the combustion maximum pressure($P_{max}$) and the crank angle at which this maximum pressure occurs(${\Theta}_{Pmax}$) were not appeared during long-time dynamometer testing. Also, BSFC with BDF 20 resulted in lower than with diesel fuel. The peak pressure with BDF 20 was higher than that with diesel fuel due to the oxygen content in BDF. And, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions with a little increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions during the durability test of an IDI diesel engine using BDF 20.

선박용 노후 디젤기관의 성능에 미치는 연료 분사시기의 영향(실습선 "해림호"를 중심으로) (Effects of Fuel Injection Timing on Performance in Old Marine Diesel Engine (Using M/S "Hae Rim" of Training Ship))

  • 임재근;조상곤;이호현;임형섭
    • 해양환경안전학회지
    • /
    • 제19권5호
    • /
    • pp.525-530
    • /
    • 2013
  • 본 연구에서는 건조 후 20여년 운항한 군산대학교 실습선 해림호의 발전기를 대상으로 직접 선박현장에서 실험하여 최적 연료 분사시기를 규명해서 선박의 경제적이고 친환경적인 운항에 도움을 주고자 연구하였다. 실험은 기관회전속도 1,200 rpm으로 일정히 유지하고, 기관부하를 0 kW에서 90 kW까지 30 kW간격으로 변화시켰으며, 연료분사시기는 BTDC $19^{\circ}$에서 $23^{\circ}$까지 $2^{\circ}$ 간격으로 변화시키면서 실험하였다. 실험결과 연료분사시기를 BTDC $21^{\circ}$에서 BTDC $23^{\circ}$로 앞당길 경우, 연료소비율은 1.37 % 감소하였고, 질소산화물은 11.59 % 증가하였으며, 매연은 23.5 % 감소하였고, 아황산가스는 2.8 % 감소하였다. 따라서 노후 발전기 엔진에 있어서 연료분사시기가 연소특성 및 배기배출물특성에 미치는 영향을 종합적으로 분석 고찰한 결과, 최적 연료분사시기는 원래의 분사시기보다 $2^{\circ}$ 앞당겨진 BTDC $23^{\circ}$로 확인되었다.

ECU 커먼레일 디젤기관에 있어서 매연 및 NOX 배출물 동시 저감용 일체형 요소-SCR 촉매필터 시스템의 특성에 관한 연구 (A Study on Characteristics of an Integrated Urea-SCR Catalytic Filter System for Simultaneous Reduction of Soot and NOX Emissions in ECU Common-rail Diesel Engines)

  • 배명환
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.111-120
    • /
    • 2014
  • The aim of this study is to develop an integrated urea-SCR catalytic filter system for reducing soot and $NO_X$ emissions simultaneously in diesel engines. In this study, the characteristics of exhaust emissions relative to reactive activation temperature under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with the integrated urea-SCR $MnO_2-V_2O_5-WO_3/TiO_2/SiC$ catalytic filter system operating at three kinds of engine speeds. The urea-SCR reactor is used to reduce $NO_X$ emissions, and the catalytic filter system is used to reduce soot emissions. The reactive activation temperature is very important for reacting a reducing agent with exhaust emissions. The reactive activation temperatures in this experiment is applied to 523, 573 and 623 K. The fuel is sprayed by the pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that the $NO_X$ conversion rate is the highest as 83.9% at the reactive activation temperature of 523 K in all experimental conditions of engine speed and load, and the soot emissions shown by the average reduction rate of approximately 93.3% are almost decreased below 0.6% in all experimental conditions regardless of reactive activation temperatures. Also, the THC and CO emissions by oxidation reaction of Mn, V and Ti are shown in the average reduction rates of 70.3% and 38% regardless of all experimental conditions.

직접분사식 디젤기관에서 바이오디젤유와 함산소성분 혼합연료 적용시 배기배출물 특성 및 EGR의 적용 연구 (A Study on Emission Charncteristics and EGR Application of Blending Fuels with Biodiesel Fuel and Oxygenate Component in a D.I. Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.43-48
    • /
    • 2008
  • The exhaust emissions of diesel engine are recognized as a major cause influencing environment strongly. In this study, the possibility of biodiesel fuel and oxygenated fuel(dimethoxy methane; DMM) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel(biodiesel fuel 90vol-%+DMM 10vol-%) was reduced approximately 70% at 2500rpm, full load, in comparison with the diesel fuel. But, power, torque and brake specific energy consumption showed no significant differences. But, NOx emission of biodiesel fuel and DMM blended fuel increased compared with commercial diesel fuel due to the oxygen component in the fuel. It was needed a NOx reduction counterplan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF(95 vol-%) and DMM(5 vol-%) blended fuel and cooled EGR method(15%).

연료성상 변화와 배기가스재순환 방법 적용에 의한 디젤기관의 성능 및 배기배출물 특성 연구 (A Study on Characteristics for Performance and Exhaust Emissions on Changes of Fuel Properties and Application of EGR Method in Diesel Engines)

  • 오영택;최승훈
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.358-363
    • /
    • 2006
  • In this study, the effects of oxygenated fuel such as ethylene glycol mono-normal butyl ether(EGBE) was investigated both DI and IDI diesel engine. Because EGBE includes oxygen content approximately 27.1 %, it is a kind of oxygenated fuel that the smoke emission of EGBE blending fuel is reduced remarkably compared with commercial diesel fuel. The focus of this study was to investigate the effects of the addition of oxygenated fuel to diesel fuel on the engine-out emissions and the performance. Smoke emissions of all EGBE blends were reduced substantially in comparison with conventional diesel fuel. This study showed that remarkable reduction of smoke with oxygenate blending fuels in diesel engines including DI and IDI combustion method. Besides, this study showed that simultaneous reduction of smoke and NOx emissions could be achieved by oxygenated fuel and EGR method that was applied to decrease NOx emissions increasing with smoke emissions reduction.