• Title/Summary/Keyword: 질산화/탈질화

Search Result 33, Processing Time 0.027 seconds

Removal of Nutrients Using an Upflow Septic Tank(UST) - Aerobic Filter(AF) System (부패조와 호기성 여과공정을 이용한 영양염류 제거)

  • Park, Sang-Min;Jun, Hang-Bae; Bae, Jong-Hun;Park, Woo-Kyun;Park, Noh-Back
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.232-238
    • /
    • 2010
  • The objective of this study was to investigate a small sewage treatment system. This system was developed to improve a nitrogen and phosphorus removal efficiency and generate less solid using upflow septic tank(UST) - aerobic filter(AF) system. The UST equipped with an aerobic filter, the filter was fed with both raw sewage and recycled effluent from the UST to induce the denitrification and solid reduction simultaneously. Overall removal efficiencies of COD and total nitrogen(TN) were above 96% and 73% at recycle ratio of 200%, respectively. Critical coagulant dose without the biochemical activity was found to be 40 mg/L. Removal efficiency of total phosphorus(TP) in influent was above 90% by chemical and biological reactions. Although the phosphorus concentration was low under the high alkalinity in raw sewage, the pH value was unchanged by the coagulant dose.

Characteristics of Phenolic Wastewater Treatment using Moving Bed Biofilm Reactor in the MLE Process (MLE type MBBR을 이용한 페놀화합물 함유폐수의 처리특성)

  • Kim, Moon Ho;Oh, Sung Mo;Bae, Yoon Sun;Park, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.521-529
    • /
    • 2007
  • Nutrient removal from synthetic wastewater was investigated using a MLE (Modified-Ludzack Ettinger) type MBBR (Moving Bed Biofilm Reactor), with different phenol ($C_6H_5OH$) concentrations, in order to determine the inhibition effects of phenol on biological nutrient removal and the biodegradation of phenolic wastewater. The wastewater was prepared by mixing a solution of molasses with known amounts of phenol and nutrients. The experiments were conducted in a lab-scale MLE type MBBR, operated with four different phenol concentrations (0, 67, 100 and 168mg/L) in the synthetic feed. Throughout the experiments, the ratio of the phenolic COD concentration to the total COD was varied from 0 to 1. Throughout batch test, the SNR (Specific Nitrification Rate) and SDNR (Specific Denitrification Rate) were significantly influenced by changes of the phenol concentration. Phenol was inhibitory to the nitrification/denitrification process, and showed greater inhibition with higher initial phenol concentrations. The SNR observed with 0, 67, 100 and 168mg phenol/L were very different like 10.12, 6.95, 1.51 and $0.35mg\;NH_{3^-}N/gMLVSS$ hr, respectively. Similarly, the SDNR observed at 0, 67, 100 and 168mg phenol/L were different like 0.322, 0.143, 0.049and 0.006mgN/gMLVSS day, respectively.

Effective Total Nitrogen (TN) Removal in Partially Aerated Biological Aerated Filter (BAF) with Dual Size Sand Media (다중 모래 여재를 적용한 부분 포기 Biological Aerated Filter의 효과적인 Total Nitrogen (TN) 제거)

  • Kang, Jeong-Hee;Song, Ji-Hyeon;Ha, Jeong-Hyub
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.5-14
    • /
    • 2010
  • A pilot-scale biological aerated filter (BAF) was operated with an anaerobic, anoxic and oxic zone at $23{\pm}1^{\circ}C$. The influent sCOD and total nitrogen concentrations in the feedwater were approximately 250 mg/L and 35 mg N/L, respectively. sCOD removal at optimum hydraulic retention time (HRT) of 3 hours with recirculation rates of 100, 200 and 300% in the column was more than 96%. Total nitrogen removal was consistently above 80% for 4 and 6 hours HRT at 300% recirculation. For 3 hours HRT and 300% recirculation, total nitrogen removal was approximately 79%. Based on fitting results, the kinetic parameter values on nitrification and denitrification show that as recirculation rates increased, the rate of ammonia and nitrate transformation increased. The ammonium loading rates for maximum ammonium removed were 0.15 and 0.19 kg $NH_3$-N/$m^3$-day for 100% and 200% recirculation, respectively. The experimental results demonstrated that the BAF can be operated at an HRT of 3 hours with 200 - 300% recirculation rates with more than 96 % removal of sCOD and ammonium, and at least 75% removal of total nitrogen.

Change of Nutrients and Behaviour of Total Coliforms in the Natural Treatment of Wastewater by Subsurface Flow Wetland System (인공습지를 이용한 자연정화 오수처리시설에서 영양물질의 변화와 대장균군의 행동)

  • Yoon, Chun-Gyeong;Kwun, Soon-Kuk;Kim, Hyung-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.3
    • /
    • pp.249-254
    • /
    • 1997
  • The constructed wetland system which is applicable to rural wastewater treatment was examined by pilot plant experiment. Removal rates of nutrients including nitrogen and phosphorus and total coliform were evaluated. The $NH_4\;^+$ concentration of the influent was in the range of 91.57 to 275.88mg/l and the effluent concentration was about 40% lower than the influent. The decreasing of the $NH_4\;^+$ concentration might be due to volatilization, plant uptake, adsorption onto soil particles, and mainly nitrification. However, generally concentrations of $NO_2\;^-$ and $NO_3\;^-$ were increased in the effluents compared to the influent concentrations, which implies that nitrogen components in the system were nitrified. Overall, the average removal rate of the nitrogen was about 5% which seems inadequate as a wastewater treatment system, and this system needs improvement on nitrogen removal mechamism. The removal rate of the phosphorus was quite high and effluent concentration was very low. Reason for high removal rate of the phosphorus might be mainly strong adsorption characteristic onto soil particles. The average removal rate of the total coliforms was about 83%, and main removal mechanisms are thought to be adsorption onto soil and inability to compete against the established soil microflora. From the results of the study, the constructed wetland system needs to be improved in nitrogen removal mechanism for field application.

  • PDF

Research of the Toxic Estimation and Treatment Method of Wastewater Including Nickel (니켈 함유폐수의 독성평가 및 처리방안에 대한 연구)

  • Kim, Man-Soo;Hwang, Hwan-Min;Park, Jong-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.983-988
    • /
    • 2009
  • This study was performed to evaluate the toxicity and seek the control method of the wastewater in which nickel (Ni) was included into an industrial wastewater treatment plant. Nickel concentration of the wastewater, of which samples were taken every hour during 24hours, were various from 0.33 to 116.0 mg/L, with 24.0 mg/L of the average concentration. IC50 values against nitrosomonas and nitorbactor, a toxic level against bacteria which could inhibit 50% of nitrification bacteria in the wastewater, are 5.5 and 4.9 mg/L respectively. Nickel in this industrial wastewater can inhibit the 50% of nitrification bacteria even after diluting this wastewater 5 times. Also, this research, which reduced the nickel concentraion, forming nickel hydroxide compounds by increasing pH of the wastewater, shows that nickel concentraion can be obtained under 1.7 mg/L at pH 11 and 0.6 mg/L at pH 12. Consequently, the result of this study is that the nitrification efficiencies can be obtained from 83.8 to 99.4% with 97.6% of the average in the biological treatment after removing nickel in the wastewater by increasing the pH above 11~12, which is forming the nickel hydroxide compounds.

Effect of Air-flow on Enhanced Nutrient Removal and Simultaneous Nitrification/Denitrification in DMR Biofilm Process (DMR 생물막 공정에서 포기량에 따른 질산화 동시 탈질화 및 영양염류 제거특성)

  • Kim, Il-Kyu;Lee, Sang-Min;Lim, Kyeong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.992-998
    • /
    • 2008
  • Recently, a new concept for nitrogen removal that is simultaneous nitrification and denitrification(SND) has been studied for wastewater treatment process. The DMR(Daiho Microbic Revolution) process that used in this study consists of two suspended anoxic, anaerobic reactors and an aerobic biofilm reactor. The function of aerobic environment and the intensity of air flow rate(2.0, 1.0, 0.5, 0.4, 0.2 L/min) were studied in the biofilm reactor; also SND and nutrient removal efficiencies were investigated. Experimental results indicated that the change in air flow did not affect COD$_{Cr}$ removal significantly. Thus sustained at 93%. The lower the air flow rate, the higher T-N removal efficiency was attained(i.e.80% at 0.2 L/min). SND efficiency was 62, 65, 72 and 78% corresponding to each air flow rate. T-P removal was sensitive to aeration intensity and removal enhanced from 75% to 96% when the air flow rate was changed from 2.0 to 0.5 L/m; however second release occured in the clarifier at 0.2 L/min. Phosphorus content of activated sludge was 5.0%, as P releases and acetate uptake a ratio of 0.75 mg P/ mg HAc.

Removal Characteristic of Nitrogenous Compounds According to the Combination of Feeding Ratio between the Supernatant of Precipitation Tank and Raw Domestic Wastewater (침전조 상등액과 유입하수의 유량대비에 따른 하수 내 질소 화합물 제거특성)

  • Park, Sang Min;Park, Jin Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.128-135
    • /
    • 2005
  • This study was done to improve the effectiveness of nitrification and denitrification using the aeration-anoxic combination method using CFSTR(continuous-flow stirred-tank reactor) attached with an anoxic reactor filled with a media. In order to calculate the concentration of nitric acid within the aeration tank proportional to the anoxic rate within the reactor, supernatant within the inflow and precipitation tanks were influxed into the anoxic reactor. The rate of nitrogen removal was calculated using the concentration of inflow and flow of returned supernatant. From the results of this experiment, the carbon source needed in the anoxic reactor came from the inflow so that anoxification was achieved completely using the inflow source without the introduction of an external carbon source. However, as the ratio of nitric acid becomes large in inflow and nitric acid flow, the carbon source within the input source decreases so that the concentration of carbon source is important.

  • PDF

Evaluation of the pre treatment tank filter media layer in LID technologies (LID 기법 전처리 시설 내 여재층 특성 평가)

  • Choi, Hye Seon;Jeon, Min Su;Geronimo, Franz Kevin;Reyes, Nash Jett;Kim, Lee Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.367-367
    • /
    • 2022
  • 토지이용의 고도화에 따라 비점오염원 부하는 증가하는 추세이며 기후변화에 따른 강우강도 증가 등으로 지표면에 축적된 고농도의 비점오염물질이 하천으로 유출, 수질오염을 가중시키고 있어 비점오염원 관리가 필요하다. LID 기법은 자연적 기작(mechanisms)과 공정(process)을 이용하여 생태계의 물질순환(물순환 포함)과 에너지 흐름이 원활하도록 조성하는 기법으로, 불투수층면에서 발생되는 강우유출수를 관리 가능하다. LID 시설에는 전처리 시설을 두어 초기 고농도의 입자상 물질을 저감시키고, 강우유출수 저류공간을 통한 유출저감, 첨두유량 등을 저감시킨다. 이러한 전처리 시설에는 유기물질 및 영양소의 생물학적 제거를 위한 미생물 서식공간의 제공 등의 역할을 수행하기 위하여 다양한 여재를 적용하고 있다. 본 연구는 비점오염물질 유입이 LID 기법 전처리 시설 내 여재층의 물리·화학적 및 생물학적 환경을 평가하였다. 3개 시설 모두 100%의 불투수층에서 발생되는 강우유출수를 처리하는 LID 시설을 연구대상으로 선정하였으며, 각각의 전처리 시설에는 자갈, 우드칩, 쇄석 등이 적용되어 있다. 퇴적물의 경우 가장 상부에 존재하는 층으로 퇴적물의 오염물질 농도는 2~10.7배 이상 매우 높게 나타났다. 우드칩의 경우 다른 여재에 비해 높은 함수량과 유기물 함량을 보였으며 이는 우드칩의 수분을 보유하는 능력과 거친 표면공극에 오염물질이 부착되기 때문으로 나타났다. 또한, 같은 무기성 여재인 쇄석과 자갈의 경우 여재 크기의 차이를 보임에도 불구하고 미생물의 군집구성과 함수량의 차이를 보이는 것으로 평가되었다. 유기물의 함량이 낮은 강우유출수의 생물학적 처리능력을 향상시키기 위해서는 유기성 여재가 필요하며, 다공성 무기 멀칭재를 적용하고 하부의 토양은 적정 유기물을 배합하여 질산화 및 탈질화 유도가 가능하도록 설계가 필요한 것으로 분석되었다.

  • PDF

Biotransforamtion of inorganic nitrogens in soil of near bank filtration sites using respirometer (호흡량에 기준한 강둑여과지 주변 표층토의 무기질소 변환)

  • 공인철;배진희;최은영;김승현
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 1999
  • Biotransformation of inorganic nitrogens, which are possible contaminants of bank filtered water, in soil of near bank filtration site was investigated based on oxygen consumption and changes of chemical parameters in respirometer. Biotransformation activities of inorganic nitrogens at different conditions of pH. water content. and added initial${NH_4}_2$$SO_4$were compared. At original low pH and 20% of water content, nearly no biotransformation activity of inorganic nitrogen was observed, in addition, control and NH$_4$-added sets did not show any significant differences of oxygen consumption. Among tested conditions, the highest activity was observed at 25% water content and pH 8. Nearly 98% nitrification activity was observed at sets amended with 400 mg $NH_4$-N/kg soil as${NH_4}_2$$SO_4$in the condition of pH 8 and 20~23% water content. However, considerable activity of subsequent denitrification was not observed.

  • PDF

Isolation and Characterization of Ammonia Oxidizing Bacteria, Nitrosomonas sp. PK1 (암모니아 산화 세균 Nitrosomonas sp. PK1의 분리 및 특성)

  • Kim, Dae-Kyung;Kim, Hyun-Kuk;Kim, Jong-Soek;Suh, Kuen-Hack;Kim, Sung-Koo;Kong, In-Soo
    • Journal of Life Science
    • /
    • v.7 no.2
    • /
    • pp.107-111
    • /
    • 1997
  • To remove dissolved $NH_{4}$$^{+}$ in the aquaculture system, one ammonia oxidizing bacterium, Nitrsomonas sp. PK1, was isolated from samples collected in many aquacultural place and sludges of waste water. The stationary phase of this atrain was reached after 9 days, and the maximum $NO_{2}$ production was shown from 3 days to 9 days. In the selective medium, 0.1% of glucose was the good carbon source for growth. However, the $NO_{2}$productivity was repressed by the addition of glucose to the medium. When $Zn^{++}$ ion was supplemented to the medium, growth and the $NO_{2}$ productivity was increased, 10mM of $ZnCl_{2}$ was the optimal concentration for growth and 1 mM of $ZnCl_{2}$ was the optimal concentration for the production of $NO_{2}$, respectively.

  • PDF