• Title/Summary/Keyword: 질산이온

Search Result 344, Processing Time 0.025 seconds

Effect of Compost Application on Radish Quality and Changes of Soil Physico-chemical Properties in Organic Farming (유기농산물 생산을 위한 퇴비시용이 무의 품질과 토양의 이화학성에 미치는 영향)

  • Lee, Ju-Sam;Chang, Ki-Woon;Cho, Sung-Hyun;Oh, Jin-Gul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.145-149
    • /
    • 1996
  • Depending on compost treatment the changes of radish morphology and soil physico-chemical properties were investigated in the sandy loam soil, pH of the soil was decreased and the contents of organic matter, total nitrogen, phosphate and cation exchange capacity was increased with increase of compost. Root weight and length were the lowest, but deficit rate was the highest(79.3%) in the treatment of 120Mg/ha of compost. The contents of chlorophyll and sugars were increased with increasing the amount of compost treatment, but the inorganics were scarcely changed. The nitrate content in radish root ranged from 10 to 120mg/kg in various treatments.

  • PDF

Formation of Porous Boehmite for Supporting Enzyme Catalyst (효소촉매 담지체용 다공성 베마이트 제조)

  • Yem, Hye Suk;Kim, Ki Do;Jun, Chang Lim;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.188-193
    • /
    • 2006
  • Synthesis of Boehmite particles were performed through the precipitation of aluminium nitrate ($Al_{3}(NO_{3})_3{\cdot}9H_{2}O$) with ammonia water ($NH_{4}OH$) by changing solution pH, mixing procedure, temperature, and feeding flux. The influence of the synthesis condition, which affected on the pH range of the Boehmite formation, particle morphology and pore property, was investigated. The Boehmite particles were formed in the reaction solution of pH 7.5~9. The particles prepared by P2jet type which maintained the pH uniformly during the precipitation resulted in homogeneous particles and pores because of the constant concentration of the reacted ion in the solution. It was resulted in the improvement of the specific surface area and pore volume of the particle at the same time. With the increasing of temperature and the decreasing of the feeding flux, it was occurred the large specific surface area and pore volume. Also it was presented the fibrillar shaped particles upper $60^{\circ}C$ of the reaction temperature. In this study, the optimal condition of the porous Boehmite was in P2jet type with $90^{\circ}C$ of reaction temperature and 2.5 mL/min of the feeding flux. At this time, the specific surface area, pore volume, and average pore size was $385.46m^2/g$, 1.0252 mL/g, 10 nm, respectively.

The Physicochemical Properties of Pork Sausages with Red Beet Powder (레드비트 분말을 첨가한 돈육소시지의 이화학적 특성)

  • Ha, So-Ra;Choi, Jung-Seok;Jin, Sang-Keun
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.896-902
    • /
    • 2015
  • This study was conducted to evaluate the substitution effect of red beet powder on sodium nitrite in emulsion-type pork sausages, and to investigate the effect of the addition of red beet powder on the physicochemical characteristics of emulsion-type pork sausages at 10℃ for 6 weeks. The treatments were divided into five groups: Control (sodium nitrite 0.01%), T1 (sodium nitrite 0.005% + red beet powder 0.5%), T2 (sodium nitrite 0.005% + red beet powder 0.25%), T3 (red beet powder 0.5%), and T4 (red beet powder 0.25%). In the CIE*I didn’t delete this asterisk (*) because it might be a marker for something you wish to add later, but please note that if there is no significance for the asterisk, it should be removed as a typographical error. color of emulsion-type pork sausages, the lightness value of the control was significantly higher than for the other groups (p<0.05). The redness value was higher in T1, whereas the yellowness value was higher in the T3 and T4 groups compared with the others (p<0.05). The pH values of emulsion-type pork sausages were significantly decreased in the T3 and T4 groups by the addition of red beet powder (p<0.05). However, the DPPH radical-scavenging activity was higher in the T1 and T3 groups than in the others (p<0.05). The residual nitrite ion was the highest in the control group (p<0.05). Therefore, it is determined that red beet powder can substitute for nitrite as a natural colorant, and it has a slightly antioxidant effect in emulsion-type pork sausages.

Long-term Variation and Characteristics of Water Quality in the Garolim Coastal Areas of Yellow Sea, Korea (가로림연안 수질환경의 특성과 장기변동)

  • Park, Soung-Yun;Kim, Hyung-Chul;Kim, Pyoung-Joong;Park, Gyung-Soo;Ko, Joen-Young;Jeon, Sang-Baek;Lee, Seung-Min;Park, Jong-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.315-328
    • /
    • 2009
  • Long-term trends and distribution patterns of water quality were investigated in the Garolim coastal areas of Yellow Sea, Korea from 1998 to 2007. Water samples were collected at 3 stations and physicochemical parameters were analyzed including water temperature, salinity, suspended solids(SS), chemical oxygen demand(COD), dissolved oxygen(DO) and nutrients. Spatial distribution patterns were not clear among stations but the seasonal variations were distinct except pH and ammonia. The trend analysis by principal component analysis(PCA) during twenty years revealed the significant variations in water quality in the study area. Annual water qualities were clearly classified into 4 clusters by PCA; year cluster 1997, 1998 and 2000-2002, 1999 and 2003-2006/2008. By this multi-variate analysis the annual trends were summarized as follows; In recent years, salinity increased, whereas dissolved inorganic nitrogen, nitrate nitrogen and COD decreased and water quality generally continued to be in good condition in Gsrolim coastal areas without inflow of freshwater from land. Garolim coastal areas are required to be conserved continuously as important coastal areas for fisheries.

  • PDF

Removal of Nitrate-Nitrogen in Pickling Acid Wastewater from Stainless Steel Industry Using Electrodialysis and Ion Exchange Resin (전기투석과 이온교환수지를 이용한 스테인레스 산업의 산세폐수 내 질산성 질소의 제거)

  • Yun, Young-Ki;Park, Yeon-Jin;Oh, Sang-Hwa;Shin, Won-Sik;Choi, Sang-June;Ryu, Seung-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.645-654
    • /
    • 2009
  • Lab-scale Electrodialysis(ED) system with different membranes combined with before or after pyroma process were carried out to remove nitrate from two pickling acid wastewater containing high concentrations of $NO_3\;^-$(${\approx}$150,000 mg/L) and F($({\approx}$ 160,000 mg/L) and some heavy metals(Fe, Ti, and Cr). The ED system before Pyroma process(Sample A) was not successful in $NO_3\;^-$ removal due to cation membrane fouling by the heavy metals, whereas, in the ED system after Pyroma process(Sample B), about 98% of nitrate was removed because of relatively low $NO_3\;^-$ concentration (about 30,000 mg/L) and no heavy metals. Mono-selective membranes(CIMS/ACS) in ED system have no selectivity for nitrate compared to divalent-selective membranes(CMX/AMX). The operation time for nitrate removal time decreased with increasing the applied voltage from 10V to 15V with no difference in the nitrate removal rate between both voltages. Nitrate adsorption of a strong-base anion exchange resin of $Cl\;^-$ type was also conducted. The Freundlich model($R^2$ > 0.996) was fitted better than Langmuir mode($R^2$ > 0.984) to the adsorption data. The maximum adsorption capacity ($Q^0$) was 492 mg/g for Sample A and 111 mg/g for Sample B due to the difference in initial nitrate concentrations between the two wastewater samples. In the regeneration of ion exchange resins, the nitrate removal rate in the pickling acid wastewater decreased as the adsorption step was repeated because certain amount of adsorbed $NO_3\;^-$ remained in the resins in spite of several desorption steps for regeneration. In conclusion, the optimum system configuration to treat pickling acid wastewater from stainless-steel industry is the multi-processes of the Pyroma-Electrodialysis-Ion exchange.

Effect of Soil Mineral Nutrients on Nitrogen Uptake of three Crops in Australian Brigalow Soil (호주(濠洲)의 Brigalow 토양(土壤)에서 무기성분(無機成分)이 세가지 작물(作物)의 질소흡수(窒素吸收)에 미치는 영향(影響))

  • Ahn, Yoon-Soo;Choi, Jung;Catchpoole, V.R.;Myers, R.J.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.201-208
    • /
    • 1994
  • In order to study the effect of exsisting soil nutritional elements on the nitrogen uptake of sunflower, sorghum and black gram, pot experiment was carried out by using soils sampled from three different depths(0~20, 45~65, 90~110cm) of Brigalow soil in Australia. The results obtained were as follows : Dry matter and nitrogen uptake of corps were increased in the soil with higher nitrogen content. Chlorine uptakes of sunflower and sorghum were increased in the soil with higher nitrogen and lower chlorine contents, but that of black gram was done in the soil with higher contents of both elements. Ratios of nitrogen derived from applied fertilizer of three corps and fixed nitrogen of black gram were relatively low in the soil with higher content of soil nitrogen, but those derived from soil nitrogen were reverse. Recovery rates of applied nitrogen were relatively increased with higher cation uptakes of crops. Chlorine uptakes of sunflower and sorghum were positively correlated with each recovery of nitrogen, but that of black gram didn't show the trend. Recovery rate of applied nitrogen for black gram had significantly negative correlation with increase of soil chloride content.

  • PDF

Isolation and Culture Conditions of a Pseudomonas Strain Capable of Removing $NH_4^+\;and\; NO_3^-$ Simultaneously in Anaerobic Conditions (혐기성 상태에서 암모니움 이온과 질산성 질소를 제거하는 미생물의 분리 및 배양조건)

  • Kim Young-Ju;Song Young Chae;Kim Jong Oh;Park Hung-Suck
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.1
    • /
    • pp.65-69
    • /
    • 2005
  • A bacterial strain AE-1-3, isolated from soil and wastewater identified as Pseudomonas strain, removed $NH_4^+\;and\; NO_3^-$ simultaneously in anaerobic cultivation in a medium containing $0.1\%\;NH_4NO_3\;and\;3.0\%$ glucose. The strain removed $NH_4^+\;,\;NO_3^-\;and\;NO_2^-$ completely in 15 days of anaerobic cultivation. Though N03- removed completely, $33\%\;of\;NH_4^+$ remained in 15 day of incubation in $1\%$ glucose and $0.1\%\;NH_4NO_3$ medium. The bacterium could remove $0.1\%\;NH_4NO_3$ completely in a short time by addition of $Cu^{2+},\;Zn^{2+},\;Sn^{2+}\;in\;0.5\%$ glucose medium. By chaning the metal concentration, $0.3\%\;NH_4NO_3$ could be removed completely.

Sensing NO3-N and K Ions in Hydroponic Solution Using Ion-Selective Membranes (이온선택성 멤브레인을 이용한 양액 내 질산태 질소 및 칼륨 측정)

  • Kim, Won-Kyung;Park, Tu-San;Kim, Young-Joo;Roh, Mi-Young;Cho, Seong-In;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.343-349
    • /
    • 2010
  • Rapid on-site sensing of nitrate-nitrogen and potassium ions in hydroponic solution would increase the efficiency of nutrient use for greenhouse crops cultivated in closed hydroponic systems while reducing the potential for environmental pollution in water and soil. Ion-selective electrodes (ISEs) are a promising approach because of their small size, rapid response, and the ability to directly measure the analyte. The capabilities of the ISEs for sensing nitrate and potassium in hydroponic solution can be affected by the presence of other ions such as calcium, magnesium, sulfate, sodium, and chloride in the solution itself. This study was conducted to investigate the applicability of two ISEs consisting of TDDA-NPOE and valinomycin-DOS PVC membranes for quantitative determinations of $NO_3$-N and K in hydroponic solution. Nine hydroponic solutions were prepared by diluting highly concentrated paprika hydroponic solution to provide a concentration range of 3 to 400 mg/L for $NO_3$-N and K. Two of the calibration curves relating membrane response and nutrient concentration provided coefficients of determination ($R^2$) > 0.98 and standard errors of calibration (SEC) of < 3.79 mV. The use of the direct potentiometry method, in conjunction with an one-point EMF compensation technique, was feasible for measuring $NO_3$-N and K in paprika hydroponic solution due to almost 1:1 relationships and high coefficients of determination ($R^2$ > 0.97) between the levels of $NO_3$-N and K obtained with the ion-selective electrodes and standard instruments. However, even though there were strong linear relationships ($R^2$ > 0.94) between the $NO_3$-N and K concentrations determined by the Gran's plot-based multiple standard addition method and by standard instruments, hydroponic $NO_3$-N concentrations measured with the ISEs, on average, were about 10% higher than those obtained with the automated analyzer whereas the K ISE predicted about 59% lower K than did the ICP spectrometer, probably due to no compensation for a difference between actual and expected concentrations of standard solutions directly prepared.

Production of Activated Carbon from Woody Fishing Port Wastes Using Sulfuric Acid as Activating Agent (목질(木質) 어항(漁港) 폐기물(廢棄物)을 원료(原料)로 한 황산(黃酸)에 의한 활성탄(活性炭) 제조(製造))

  • Kim, Dong-Su;Lee, Jung-Eun
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.50-57
    • /
    • 2006
  • Production of activated carbon from woody fish parking cases has been studied using waste sulfuric acid as an activating agent for the purpose or promoted recycling of woody fishing port wastes. The adsorption capacity of produced activated carbon was observed to increase with activation temperature and reached its maximum at ca. $650^{\circ}C$ under the experimental conditions. However, the adsorption capacity of activated carbon became deteriorated above this temperature due to the thermal degeneration of its structure. Optimal activation time was found to be about 120 minutes and 1:3 weight ratio of raw material and activating agent was appropriate for increased adsorption capacity of activated carbon under the conditions of $550^{\circ}C$ and 60 minutes of activation time. Regarding the effect of the concentration of activating agent on activation, ca. 1.2 M of sulfuric acid was observed to be proper for an optimal activation or raw material. Comparison of the activation power of sulfuric acid with nitric acid showed that sulfuric acid was superior to nitric acid, however, with regard to the yield of activated carbon there was no significant difference between the two activating agents. The degree of dispersion of carbon particles was shown to be relatively high in neutral condition and the produced activated carbon was considered to be effectively employed for the treatment of metal ions in wastewater due to its negative surface charge in aqueous condition.

Characteristics of Geochemical Processes along the Salinity Gradient in the Han River Estuary (한강 기수역에서 염분구배에 따른 지화학적 특성 변화)

  • 김동화;박용철;이효진;손주원
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.4
    • /
    • pp.196-203
    • /
    • 2004
  • To understand the geochemical processes in the Han River Estuary, distributions and behaviors of nutrients, dissolved organic matters, and uranium were investigated and analyzed during estuarine tidal mixing in June 2000 and February 2001. The distribution of inorganic nutrients showed very dynamic distributional patterns implying an apparent nitrification process and a concave non-conservative mixing along the salinity gradient. Dissolved organic carbon was high in the upstream region and decreased sharply in the low salinity region of around 5 psu. The 3-D fluorescence characteristic of dissolved organic matter showed two distinct fluorophores in the study area. Biomacromolecules originated mainly from the indigenous biochemical processes and geomacromolecules from terrestrial humic materials. In the study area, the distribution of geomacromolecule showed a concave non-conservative property along the salinity gradient presumably due to the flocculation and removal processes in the estuary. Meanwhile, distribution of the dissolved uranium, mainly in the form of stable uranium carbonate complex, also showed a concave non-conservative property along the salinity gradient in the Han River Estuary. From this study, the removal rate of dissolved uranium in the Han River Estuary was estimated to be about 7.1 ton per year.