• 제목/요약/키워드: 질산이온농도

검색결과 182건 처리시간 0.182초

Cyclic Voltammetry를 이용한 고농도 질산매질에서 Ag(I) 이온의 전착 특성 연구

  • 박상윤;문제권;최왕규;김영민;이근우;정종헌;오원진
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.563-567
    • /
    • 1998
  • 5M 이상의 질산 매질에 있는 Ag(Ⅰ) 이온을 전착회수하기 위하여 질산 농도에 따른 전착특성을 cyclic voltammetry 방법으로 조사하였다. Ag(Ⅰ) 이온의 전착은 질산 매질의 농도에 크게 영향을 받았으며 질산 농도가 3M 이하인 경우에는 백금을 전극에서 Ag(Ⅰ) 이온이 쉽게 전착될 수 있음을 알 수 있었다. 질산농도가 5M 이상에서는 질산 자체의 환원이 활발하게 일어나 Ag(Ⅰ) 이온의 전착을 억제하였으나 용액을 혼합시킬 경우 질산 환원의 영향을 크게 감소시킬 수 있었다

  • PDF

Effect of Temperature and FA Concentration on the Conversion of Ammonium to Nitrite (온도와 FA 농도가 암모늄 이온의 아질산 전환에 미치는 영향)

  • Kim, Jung Hoon;Song, Young Chae;Park, Hung Suck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제26권4B호
    • /
    • pp.427-432
    • /
    • 2006
  • The effects of free ammonia (FA) concentration and temperature on nitrite accumulation were studied. To estimate the most effective ammonium oxidation and nitrite build-up condition, nitrification tests were conducted in batch conditions at various FA concentrations, and at different ammonium concentration and temperature. The activation energies of ammonium oxidizer were 81.7 KJ/mol below $20^{\circ}C$, and 32.5 KJ/mol over $20^{\circ}C$, while that of nitrite oxidizer was 35.5 KJ/mol irrespective of temperature variations. The results of nitrification tests conducted at different FA concentrations and temperatures showed that temperature strongly affects nitrite accumulation, while effects due to FA concentrations were found negligible.

Effects of Initial Concentration of Ammonium Ion and Active Nitrifiers on Nitrification (암모늄 이온 및 질산화균의 초기 농도가 질산화에 미치는 영향)

  • Kim, Jung Hoon;Kim, Young Ju;Park, Hung Suck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제26권4B호
    • /
    • pp.421-426
    • /
    • 2006
  • The effect of initial concentration of ammonium ion ($N_0$) and active nitrifiers ($X_0$) on nitrification was examined by continuous monitoring of the ammonium removal rate. The concentration of the active nitrifiers in the culture sludge, measured by the oxygen uptake rate (OUR), was found to be 42.8% of the culture sludge. Experiments were carried out under different ratios of $N_0/X_0$, viz., 0.025 to 0.493. The results from this study show that the oxidation rate was similar under the same $N_0/X_0$ ratio despite different initial concentration of ammonium ion ($N_0$) and active nitrifiers ($X_0$). Moreover, the Contois kinetic expression which includes biomass concentration, was found to describe the mechanism behind nitrification process. The ammonium oxidation rate ($q_{Nmax}$) and half saturation constant per unit activated nitrifiers ($K_N{^{\prime}}$) were theoretically determined using the Contois expression. These values were found to be 4.32 gN/gVSS/day and 0.013 gN/gVSS respectively.

A Criteria on Nitrate Concentration in Soil Solution and Leaf Petiole Juice for Fertigation of Cucumber (Cucumis sativus L.) under Greenhouse Cultivation (시설 오이의 관비재배를 위한 토양용액과 엽병즙액중 질산태 농도 기준 설정)

  • Lim, Jae-Hyun;Lee, In-Bog;Kim, Hong-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제34권5호
    • /
    • pp.316-325
    • /
    • 2001
  • To develope a technique for efficiently managing fertilizer for cucumber, a quick test method to quantify nitrate content in soil solution and leaf petiole juice using a simple instrument was investigated. Among the nitrate analyzing instruments such as compact ion meter, nitrate ion meter, and test strip with reflectometer, the paper test-strip used in conjunction with a hand-held reflectometer was most closely correlated with ion chromatography method in nitrate content, and then it would be suggested with a tool that a farmer can use rapidly, conveniently and accurately for nitrate analysis in a field. Nitrate content in soil solution collected by porous cup was very variable on the lapsed time after drip irrigation and the sampling positions such as soil depth and the distance from dripper. As a result, a significant correlation between nitrate contents of soil solutions and 2M KCl soil extract was not found. However, nitrate content in soil solution extracted with a volume basis (soil:water=1:2) showed the highly significant correlation with that in 2M KCl extract. Nitrate contents of cucumber leaf petiole juices was greatly different between upper and lower leaves. Eleven to sixteen positioned-leaf would be a proper sampling position to determine nitrate content in leaf petiole for evaluating nutrient state by plant tissue analysis. From the secondary regression equations between nitrate contents of soil and petiole juice and the yield of cucumber, nitrate levels for real time diagnosis were estimated as $400mg\;l^{-1}$ soil solution by porous cup. $300mg\;l^{-1}$ in a soil volume extraction, and $1400mg\;l^{-1}$ in petiole juice from spring to summer season. In addition, the maximum yield of cucumber fruit in pot test was obtained in nitrate $1500mg\;l^{-1}$ level of petiole juice, which was similar to nitrate $1400mg\;l^{-1}$ in greenhouse trial.

  • PDF

Improvement of Growth and Benzo[c]phenanthridine Alkaloids Production by Modifying Nitrogen Source in Suspension Cell Culture of Eschscholtzia californica (Eschscholtzia californica의 현탁 세포배양에서 질소원 조절에 의한 세포 성장 및 Benzo[c]phenanthridine Alkaloids 생산량 향상)

  • Lee, Song-Eun;Rhee, Hong-Soon;Son, Seok-Young;Park, Jong-Moon
    • KSBB Journal
    • /
    • 제24권2호
    • /
    • pp.195-200
    • /
    • 2009
  • The effect of nitrogen source on cell growth and benzo[c]phenanthridine alkaloids production by modifying $NO_3\;^-:NH_4\;^+$ ratio in cell suspension culture of Eschscholtzia califarnica was investigated. When total nitrogen concentration is maintained (60 mM), maximum benzo[c]phenanthridine alkaloids production is about 60.72 mg/L at 50:10 (mol/mol). This productivity was 3.8 times higher than that obtained when cells were grown instandard MS medium. The decrease of $NO_3\;^-:NH_4\;^+$ ratio at 60 mM of total nitrogen caused the decline of both growth and benzo[c]phenanthridine alkaloids production. Under the same concentration of $N0_3\;^-$ (50 mM), higher concentration of $NH_4\;^+$ inhibited cell growth strongly but induced alkaloids production slightly. Also, under the same concentration of $NH_4\;^+$ (25 mM), higher concentration of $N0_3\;^-$ induced alkaloids production strongly but high concentration of $N0_3\;^-$ (${\geq}$100 mM) interfered alkaloids instead. Maximum benzo[c]phenanthridine alkaloids production is about 62.71 mg/L at 50:25 (mol/mol). These results suggest that higher biomass and higher alkaloids production could be obtained by optimizing each nitrogen concentration as well as $NO_3\;^-:NH_4\;^+$ ratio in the culture medium. Nitrate and ammonium in culture medium have distinct role in the regulation of growth and alkaloids production; ammonium had a strong influence on growth while nitrate had an influence on alkaloids production.

Nitrate Uptake by Soil Microorganism, Bacillus sp. GS2 (토양미생물 Bacillus sp. GS2에 의한 질산이온 흡수)

  • Wang, Hee-Sung;Yoon, Young-Bae;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • 제54권2호
    • /
    • pp.79-83
    • /
    • 2011
  • Over-application of nitrogen fertilizer keeps increasing the salinity in the soils of greenhouse in domestic agriculture. In order to remove the excess amounts of soil nitrate, soil microorganisms which have high capacity of nitrate uptake were isolated from the upland soils and their nitrate uptake activities were measured. Strain GS2 was able to remove 50 mM nitrate within 12 h. After sequence comparison analysis of 16S rRNA gene, the strain was identified and named as Bacillus sp. GS2. When the growth and nitrate uptake activities were measured, maximal values were obtained at $30-40^{\circ}C$ and $37^{\circ}C$, respectively; however, both were optimal at pH 6-8. In the media containing 50 mM nitrate, Bacillus sp. GS2 removed 43 mM nitrate which is corresponding to 86% removal. Similar amounts of nitrate removal were observed at the nitrate concentrations up to 300 mM, showing a saturation in nitrate uptake at concentrations above 50 mM. These results imply that Bacillus sp. GS2 can be a good candidate for the microbial remediation of accumulated environmental nitrate because of its excellent growth and nitrate uptake activity.

Sensitized effects of photo-sensitized oxidation in water under UV irradition (수용액에서 UV를 이용한 광증감 산화반응시 증감제에 따른 증감효과에 관한 연구)

  • Lee, Chun Sik;Lee, Dong-Keun
    • Clean Technology
    • /
    • 제4권2호
    • /
    • pp.23-31
    • /
    • 1998
  • Photo-sensitized oxidation of benzene in aqueous solution was conducted with persulfate, nitrate, nitrite, sulfate and chloride as sensitizers.In the photo-sensitized oxidation of benzene persulfate, nitrate and nitrite could act as sensitizers, while no detectable effects could be observed with sulfate and chloride. With increasing nitrite concentration the photo-sensitized oxidation of benzene ran through a maximum value and decreased thereafter with increasing nitrite concentration. A build-up of nitrite ions seemed to scavenge hydroxyl radicals. When nitrite was present with other ions, nitrite inhibited the photo-sensitized oxidation of benzene. Phenol and biphenyl were identified as intermediate.

  • PDF

Distribution of Zr(IV) Ion Species in Aqueous Solution (수용액(水溶液)에서 지르코늄이온의 농도분포(濃度分布))

  • Lee, Man-Seung;Lee, Hwa-Young
    • Resources Recycling
    • /
    • 제20권6호
    • /
    • pp.56-62
    • /
    • 2011
  • Zirconium is used in nuclear reactors as a structural material due to its excellent corrosion resistance and to low neutron crosssection. Variation in the distribution and solubility of Zr(IV) with solution pH was obtained. Distribution of Zr(IV) containing species in HCl and $HNO_3$ solution was analyzed by considering the complex formation of Zr(IV) species with the anion of the inorganic acid. Bromley interaction parameter between $ZrO^{2+}$ and nitrate ion was estimated by using the reported data on the solvent extraction of Zr(IV) by Cyanex272 from $HNO_3$ solution. This Bromley parameter can be utilized in calculating extraction isotherm of Zr(IV) and in predicting the separation factor between Zr(IV) and Hf(IV).

Nitrate Removal in Rural Groundwater Using Ion Exchange Resin (이온교환수지를 이용한 농 ${\cdot}$ 어촌 지하수중의 질산이온 제거)

  • Kwun, Soon-Kuk;Yu, Myong-Jin;Jung, Tae-Myung;Kim, Min-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • 제16권2호
    • /
    • pp.193-198
    • /
    • 1997
  • The purpose of this study was to find out a suitable resin to remove $NO_3-N$ from groundwater. Four different commercial resins differentiated by type, porosity and nitrate selectivity were used to compare the performance of nitrate removal. Gel type, Type 2 anion exchange resin was preferable when anion concentration of raw water was low. But efficiency of this resin decreased as flow rate increased. However, macroporous type resins were not affected by increasing flow rate. Macroporous resins were preferable when anion concentrations in raw water were high and high flow rate was proposed. And the general type resin showed better efficiency when sulfate concentrations were low. However the nitrate selective resin had better efficiency in treating raw water of high sulfate concentration. From the results, it may be drawn that nitrate selective resins are preferable to general type when a sulfate concentration in groundwater is over 50mg/l.

  • PDF

Anion Adsorption Properties of Organobentonites Modified by Cationic Polymers (양이온 폴리머를 이용한 유기벤토나이트의 음이온 흡착특성)

  • 윤지해;황진연;이효민;고상모;유장한
    • Journal of the Mineralogical Society of Korea
    • /
    • 제17권2호
    • /
    • pp.147-155
    • /
    • 2004
  • Anion adsorption properties of organobentonites modified by two cationic polymers, hexadecyltrimmethylammonium (HDTMA) and cetylpyridinum (CP), were investigated. The organobentonites showed the significant expansion of basal spacing to 42.0 $\AA$ at room temperature. The adsorption experiments were conducted for the 0.2 g of organobentonites with 40 mL solutions of various concentrations of anions such as nitrate, sulfate and phosphate. As a result, the organobentonites showed excellent adsorption capacities for those anions whereas untreated bentonite showed very low adsorption capacity. Adsorption rate of HDTMA-bentonite was about 90% for 100 mg/L solutions of nitrate and phosphate, and that of CP-bentonite was 97% for 100 mg/L solution of nitrate. Adsorption behaviors were slightly different for the different organobentonites and anions. Both organobentonites showed relatively higher adsorption rate for nitrate and phosphate than sulfate. Therefore, these organobentonites showing high anion adsorption capacities can be used far the removal of deleterious anions in the treatment of environmental pollution.