• Title/Summary/Keyword: 질산은

Search Result 2,180, Processing Time 0.029 seconds

A study on γ-Al2O3 Catalyst for N2O Decomposition (N2O 분해를 위한 γ-Al2O3 촉매에 관한 연구)

  • Eun-Han Lee;Tae-Woo Kim;Segi Byun;Doo-Won Seo;Hyo-Jung Hwang;Jueun Baek;Eui-Soon Jeong;Hansung Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Direct catalytic decomposition is a promising method for controlling the emission of nitrous oxide (N2O) from the semiconductor and display industries. In this study, a γ-Al2O3 catalyst was developed to reduce N2O emissions by a catalytic decomposition reaction. The γ-Al2O3 catalyst was prepared by an extrusion method using boehmite powder, and a N2O decomposition test was performed using a catalyst reactor that was approximately 25.4 mm (1 in) in diameter packed with approximately 5 mm of catalysts. The N2O decomposition tests were carried out with approximately 1% N2O at 550 to 750 ℃, an ambient pressure, and a GHSV=1800-2000 h-1. To confirm the N2O decomposition properties and the effect of O2 and steam on the N2O decomposition, nitrogen, air, and air and steam were used as atmospheric gases. The catalytic decomposition tests showed that the 1% N2O had almost completely disappeared at 700 ℃ in an N2 atmosphere. However, air and steam decreased the conversion rate drastically. The long term stability test carried out under an N2 atmosphere at 700 ℃ for 350 h showed that the N2O conversion rate remained very stable, confirming no catalytic activity changes. From the results of the N2O decomposition tests and long-term stability test, it is expected that the prepared γ-Al2O3 catalyst can be used to reduce N2O emissions from several industries including the semiconductor, display, and nitric acid manufacturing industry.

Phytoplankton Response to Short-term Environmental Changes in the Vicinity of a Fish Cage Farm of Tongyeong Obi in Summer (통영 오비도 어류양식장 주변에서 하계 수계 내 단주기 환경요인의 변화에 따른 미세조류 반응)

  • Lee, Minji;Baek, Seung Ho
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 2017
  • In order to assess the potential environmental factors in the vicinity of a fish cage farm, we investigated the biotic and abiotic factors during a short-term period in summer 2016 in two inner stations of Tongyeong Obi. High water temperature on August 10th was apparent among the full depth of up to 29℃, which might have been related to the abnormally high temperatures of large amounts of the Changjiang River discharge along the Tongyeong coast. The concentration of nitrate+nitrite, ammonium, phosphate, and silicate ranged from 0.08 to 5.11 μM, 0.08 to 34.62 μM, 0.01 to 1.15 μM, and 1.46 to 31.79 μM, respectively. The nutrients were mainly supplied by precipitation and leaching from the bottom sediments in the fish culture farm area. It was not retained for a long duration because of the phytoplankton consumption and diffusion by water currents. The chlorophyll a concentration varied from 0.49 ㎍ l-1 to 7.39 ㎍ l-1. At that time, Chaetoceros debilis, C. pseudocurvisetus, and Pseudo-nitzschia delicatissima were rapidly proliferated and reached the level of 4.74 × 109 cells l-1. In particular, the lowest dissolved oxygen was recorded at 4.52 ㎍ l-1 at the bottom layer after bloom. Therefore, even though phytoplankton blooms in summer have frequently occurred in a fish culture farm area, the oxygen-deficient environments were not found in neither the surface nor bottom layers, which implied that the water masses might be well exchanged from the mouth of the northwest and southeast between Obi and Mireuk Island in the study area.

Effects of Various Biodegradable Mulching Films on Growth, Yield, and Soil Environment in Soybean Cultivation (콩 재배지에서 다양한 생분해성 멀칭필름 종류별 작물 생육, 수량 및 토양환경에 미치는 영향)

  • Ye-Guon Kim;Yeon-Hu Woo;Hyun-Hwa Park;Do-Jin Lee;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.34-48
    • /
    • 2024
  • The objective of this study was to evaluate the safety of biodegradable mulching films in soybean (Glycine max) cultivation by measuring their effects on crop growth and yield, film decomposition and soil chemical and physical properties. In 2022 and 2023, plant height, branch number, chlorophyll contents, yield components, and yield of soybean did not vary significantly in areas using PE films and biodegradable mulching films. The light transmission rate of the biodegradable mulching films ranged from 6.4 to 15.8% when measured 112 days after soybean transplanting, and was higher, on average, in 2023 than in 2022. In both years, degradation of the biodegradable mulching films began 20 days after soybean transplantation and increased over time. In addition, remains of biodegradable mulching films were present in fields at soybean harvest and remained until 50 days after harvest. Decomposition rates of the biodegradable mulching films at 112 days after soybean transplanting ranged from 9.8 to 26.7% in 2022 and 13 to 36% in 2023. Although soil pH and EC varied based on the year and timing of measurements, there was no significant difference between areas that used biodegradable mulching films and PE films. Soil organic matter, nitrate and exchangeable cation contents such as Ca, Mg, and K were not significantly different in areas that used both PE films and biodegradable films. However, significantly higher levels of available phosphoric acid content were measured in areas that used biodegradable mulch films E, S, and T. Regardless of which films were used, there were no significant differences in the soil's physical properties. In 2022 and 2023, there was no difference between areas that used biodegradable mulch films and PE films. However, soil temperature in mulched areas was 2℃ higher and soil moisture was 5-15% higher than in non-mulched areas. Barley growth was not affected by being planted in soil that had been used for soybean cultivation with biodegradable films. Therefore, the biodegradable mulch films used in this study can be used without negatively affecting the growth, yield, and soil environment of soybeans.

Effect of organic fertilizer application on soil carbon accumulation (유기질비료의 사용이 작물의 생육, 토양화학성 및 토양탄소 축적량에 미치는 영향)

  • Yu Na Lee;Dong Won Lee;Jin Ju Yun;Jae Hong Shim;Sang Ho Jeon;Yun Hae Lee;Soon Ik Kwon;Seong Heon Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.5-11
    • /
    • 2024
  • Objective of this study was to evaluate the effect of organic fertilizer application on yield, soil chemical properties and soil organic carbon (SOC) in Korean cabbage cultural field. The experimental treatments consisted of none fertilizer (NF), NPK (inorganic fertilizer, N-P2O5-K2O : 320-78-198 kg ha-1), Organic fertilizer (OF 50, 100, 150% on application rate of standard 110 kg ha-1 as N, topdressing: 210 kg ha-1 as inorganic fertilizer). In experimental results, the growth characteristics and yields were not significantly different among the treatments. There was no significant difference in soil pH, available phosphate, ammonium nitrogen and exchangeable potassium, while organic matter, electrical conductivity and nitrate nitrogen were increased when organic fertilizer application. Also, SOC was increased with the application of organic fertilizers. These results showed that pre-application of organic fertilizer might be effective in a carbon storage in the field soil cultivating Korean cabbage.

Effects of Co-digestate application on the Soil Properties, Leachate and Growth Responses of Paddy Rice (통합혐기소화액의 시용이 벼 생육 및 논토양 환경에 미치는 영향)

  • Hong, Seung-Gil;Shin, Joung-Du;Kwon, Soon-Ik;Park, Woo-Kyun;Lee, Deog-Bae;Kim, Jeong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • Livestock manures have a potential to be a valuable resource with an efficient treatment. In Korea, 42 million tons of livestock manure were generated in 2008, and 84 % of them were used for compost and liquid fertilizer production. Recently recycling of livestock manure for biogas production through anaerobic digestion is increasing, but its utilization in agriculture is still uncertified. In this study, there was applied co-digestate to the paddy for rice cultivation based on N supplement. Co-digestate was fertilizer fermented with pig slurry and food waste combined with the ratio of 70:30(v:v) in its volumetric basis. For assessing the safety of co-digestate, it was monitored the contents of co-digestate for seasonal variation, resulted in no potential harm to the soil and plant by heavy metals. The results showed that soil applied with co-digestate was increased in exchangeable potassium, copper and zinc mainly due to the high rate of pig slurry in co-digestate applied. Considering high salt content due to the combination with food waste, strict quality assurances are needed for safe application to arable land though it has valuable fertilizer nutrient. Leachate after treatment showed that the concentration of nitrate nitrogen washed out within two weeks. Considering the salt accumulation results in soil, it is highly recommended that the application rate of co-digestate should not exceed the crop fertilization rate based on N supplement. With these results, it was concluded that co-digestate could be used as an alternative fertilizer for chemical fertilizer. More study is needed for the long-term effects of co-digestate application on the soil and water environment.

Effects of Some Physico-Chemical Conditions of Sioil on Growth and Ionic Balance of the Tobacco Plant (Nicotiana Tabacum L.) I. Effect of Acidity(pH), Moisture(pF) and Anions (Cl-, SO4-) in Soil on Grwth and Ionic Balance of Tobacco (토양(土壤)의 몇가지 이화학적조건(理化學的條件)이 연초(煙草)의 생육(生育) 및 이온평형(平衡)에 미치는 영향(影響) I. 토양(土壤)의 pH, pF와 음(陰)이온(Cl-, SO4-)이 연초(煙草)의 생육(生育) 및 이온평형(平衡)에 미치는 영향(影響))

  • Kim, Jai-Jong;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.3
    • /
    • pp.117-129
    • /
    • 1981
  • An experiment with the tobacco plant was conducted in the pots. A sandy humic soil was used with 2 levels of pH, 3.5 and 5.8 with 2 kinds of anions, Cl as $NH_4Cl$ and $SO_4$ as $(NH_4)_2SO_4$, and with 4 levels of pF, 1.5, 2.0, 2.5, and 3.5. The pH-treatment created different N-forms; $NH_4$ at low pH(3.5) and $NO_3$ at high pH (5.8). The results are summarized as follows: 1. At low pH (3.5) with high concentration of $NH_4$ given as $NH_4Cl$, the high content of $NH_4$ and Cl in tobacco resulted in plants suffering from $NH_4$ and Cl toxicity as well as Mn toxicity. As a result of these toxicity, an extremly abnormal growth of tobacco was clearly appeared. In the tobacco grown at low pH with $NH_4$ given as $(NH_4)_2SO_4$, a large amount of the $NH_4$ uptake developed Mg and Ca deficiencies. $NH_4-N$, which had been applied to the soil of high pH (5.8), was almost completely transformed into $NO_3-N$ by nitrification and, on this low acidic soil, the plants were all healthy regardless of Cl or $SO_4$ added together with $NH_4-N$. However, dry matter production was higher and maturity faster when $SO_4$ was used as anion than when Cl was used. 2. High moisture content in soil, to some extent, is necessary for a good development and growth of the tobacco plant. Phosphate uptake seemed to be limited at higher moisture stress. The dry matter yield of tops and roots of tobacco were in the order of pF 1.8 > 2.1 > 2.6 > 3.6, respectively. 3. Data of chemical analysis and dry matter yields of tops and roots showed that the tobacco plant followed the normal (C-A) concept. In the normal growth of plants, the carboxylate content of tops was quite comparable to the estimated (C-A) values. If $NH_4$ content of plants remains in quite high quantities, it must be analysed and taken into consideration for the (C-A) calculation. Al is not transported toward tops in toxic amounts due to its high immobility, it mostly stay in or on the roots, probably due to precipitation as a aolt. When Al is present in high quantities, it has to be considered into the (C-A) calculation.

  • PDF

Application Effects of Some Nitrogen Fertilizers Forms for the Growth and Yield of Rice Plant (몇가지 형태(形態)의 질소비료시비(窒素肥料施肥)가 수도(水稻)의 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Park, Chang Keu;Yuk, Chang Su;Cho, Gwang Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.78-88
    • /
    • 1985
  • Nitrogen fertilizer effectiveness on rice production was studied to evaluate the different forms and sources. Seven kind of nitrogen fertilizers were applied in two levels, 15 and 30 kg per 10a on Jinjubyeo (Japonica type) in silt loam paddy soil of pot cultivation. The results were summerized as follows; 1. pH in soils was decreased with enhancement of ammonium sulfate application in $NH_4-N$, but it was increased with times after nitric-acid application and PH change in soil was not remarkable when $NO_3-N$ with accessory component was applied. 2. $NH_4-N$ contents in soil were the lowest at 2 weeks after application in N 15kg/10a regardless of different sources of nitrogen fertilizer. $NO_3-N$, in N 30kg/10a, was decreased continuously until 4 weeks, while $NH_4-N$, Urea-N were at minimum during 2-3 weeks. 3. Growth of culm length and straw weight applied with AN (Ammonium Nitrate), AS (Ammonium Sulfate) and urea were superior to the form of nitrate. While NA (Nitric Acid), PN (Potassium Nitrate) and CN (Calcium Nitrate) plot of the $NO_3-N$ was the dominant fertilizers for root elongation. 4. Brown rice yields were increased dominantly by $NH_4-N$ application such as AS or AP than $NO_3-N$ pot. But the yields in case of $NO_3-N$ application CN, PN and NA were decreased. 5. N, P, Mg and Mn content of straw ranked the effectiveness of nitrogen forms as $NH_4-N$, Urea-N and $NH_4-N+NO_3-N$, while K, Ca and $SiO_2$ content of straw in $NO_3-N$ fertilizer plot were high while N, P, Mg, Mn, Fe and Mg were low. 6. Increament of nitrogen absorption in straw was stimulated by enhancement of phosphorous absorption and the growth and yield of rice plant were increased. Absorption of N, P, Ca and Mg was decreased by CN application. Absorption of N, P and Mg also was decreased by $NO_3-N$ application and N, P, Mg or Ca content were seemed to simulated the growth and yield of rice plant. 7. $SiO_2$, Zn and Fe contents of the root at harvest stage were higher than those of the straw. N, P, Mg, Mn, Zn and Fe contents were high in $NH_4-N$ and Urea treatment. While K, ca and $SiO_2$ contents, however, were high in $NO_3-N$ treatment.

  • PDF

Decentralized Composting of Garbage in a Small Composter for Dwelling House I. Laboratory Composting of the Household Garbage in a Small Bin (가정용 소형 퇴비화용기에 의한 부엌쓰레기의 분산식 퇴비화 I. 실험실 조건에서 퇴비화 연구)

  • Seo, Jeoung-Yoon;Joo, Woo-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.321-337
    • /
    • 1994
  • The garbage from the dwelling houses was composted in two kinds of small composter in laboratory to investigate the possibility of garbage composting. They were general small composters. One (type 1) was insullated but the other (type 2) was not. Because it was found that type 2 was not available for composting under our meteorological conditions through winter experiment, only type 1 was tested in spring and summer. The experiment was performed for 8 weeks in each season. The seasonal variation of several compounds in compost was evaluated and discussed. The result summarized belows are those taken at the end of the experiment, if the time was not specified. 1) The maximum temperature was $58^{\circ}C$ in spring, $57^{\circ}C$ in summer and $41^{\circ}C$ in winter. This temperature was enough to destroy the pathogen except for winter. 2) The mass was reduced to average 62.5% and the volume reduction was avergae 74%. 3) The density was estimated as 0.7kg/l in spring, 0.8kg/l in summer and 1.1kg/l in winter. 4) The water content was not much changed for composting periods. It had 75.6% in spring and 76.6% in summer and winter. 5) There was a great seasonal difference in pH value. It was reached to pH 6.13 in spring, pH 8.62 in summer and pH 4.75 in winter. 6) The faster organic matter was decomposed, the greater ash content was increased. Cellulose and lignin content were increased, but hemicellulose content was reduced during composting period. 7) Nitrogen contents were in the range of 3.1-5.6% and especially high in summer. After ammonium nitrogen contents were increased at the early stage of composting period, they were decreased. The maximum ammonium nitrogen content was 3,243mg/kg after 2 weeks in winter, 6,053mg/kg after 3 weeks in spring and 30,828mg/kg after 6 weeks in summer. C/N-ratios were not much changed. Nitrification occurred actively in spring and summer. 8) The contents of volatile and higher fatty acids were increased in early stage of composting and reduced after that. The maximum content of total fatty acid was 10.1% after 2 weeks in winter, 5.8% after 2 weeks in spring and 15.7% after 4 weeks in summer. 9) The contents of inorganic compounds were not accumulated as composting was proceeded. They were in the range of 0.9-4.4% $P_2O_5$, 1.6-2.9% $K_2O$, 2.4-4.6% CaO and 0.30-0.80% MgO. 10) CN and heavy metal contents did not show any tendency. They were in the range of 0.11-28.99mg/kg CN, 24-166mg/kg Zn, 5-129mg/kg Cu, 0.8-14.3mg/kg Cd, 7-42mg/kg Pb, ND-30mg/kg Cr and $ND-132.16\;{\mu}g/kg$ Hg.

  • PDF

Studies on absorption of ammonium, nitrate-and urea-N by Jinheung and Tongil rice using labelled nitrogen (중질소(重窒素)를 이용(利用)한 진흥(振興)과 통일(統一)벼의 암모니움, 질산(窒酸) 및 요소태(尿素態) 질소(窒素)의 흡수특성(吸收特性) 연구(硏究))

  • Park, Hoon;Seok, Sun Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.4
    • /
    • pp.225-233
    • /
    • 1978
  • Uptake and distribution of labelled urea, $NH{_4}^+$, and $NO{_3}^-$ by Tongil and Jinheung rice grown with each nitrogen source until ear formation stage under water culture system were as follows. 1. When the previous nitrogen source was same as one tested the uptake rate ($mg^{15}N/g$ d.w. root 2hrs, at $28^{\circ}C$ light) was great in the order of $NH_4$ >urea> $NO_3$ and higher (especially $NH_4$) in Tongil than in Jinheung. Rate limiting step (slowest) seems to be exist at R (root)${\rightarrow}$LS(leaf sheath) for urea, LS${\rightarrow}$LB(leaf blade) for $NH_4$ and M(medium)${\rightarrow}$R for $NO_3$. The fast step of translocation appeare to be at M${\rightarrow}$R for urea R${\rightarrow}$LS for $NH_4$ and LS${\rightarrow}$LB for $NO_3$. 2. The uptake rate of $NH_4$ by the urea-fed plant increased almost linearly from $18^{\circ}C$ via $28^{\circ}C$ to $38^{\circ}C$ in Tongil ($Q_{10}$=1.21 and 1.32 respectively) while no change in Jinheung ($Q_{10}$=0.99 and 1.00 respectively). It decreased by 12% in Jinheung under dark but uo change in Tongil. 3. The uptake rate of nitrogen source by different source-fed plant was great in the order of $NH_4{\rightarrow}^{15}NO_3$ $NO_3{\rightarrow}^{15}NH_4$, $urea{\rightarrow}^{15}NO_3$ and higher (especially $NH_4{\rightarrow}^{15}NO_3$) in Tongil. In the case of $urea{\rightarrow}^{15}NH_4$ it was same in $NH_4{\rightarrow}^{15}NO_3$ for Tongil and slightly lower than that in $NO_3{\rightarrow}^{15}NH_4$ for Jinheung. It was lower (especially Tongil) in $NH_4{\rightarrow}^{15}NO_3$ than in $NH_4{\rightarrow}^{15}NH_4 $ 4. The uptake rate (in $NH_4{\rightarrow}^{15}NO_3$) was higher during 15 minutes than during 2 hours and always higher in Tongil. 5. $^{15}N$ excess % and content in each part, and uptake rate of root seems to have their own significance relatling with metabolism and translocation respectively. The change of nitrogen nutritional environment and source preference of varieties were discussed in relation to field condition and efficient use of nitrogen fertilizer.

  • PDF

INFLUENCES OF DRY METHODS OF RETROCAVITY ON THE APICAL SEAL (치근단 역충전와동의 건조방법이 폐쇄성에 미치는 영향)

  • Lee, Jung-Tae;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.166-179
    • /
    • 1999
  • Apical sealing is essential for the success of surgical endodontic treatment. Root-end cavity is apt to be contaminated with moisture or blood, and is not always easy to be dried completely. The purpose of this study was to evaluate the influence of dry methods of retrocavity on the apical seal in endodontic surgery. Apical seal was investigated through the evaluation of apical leakage and adaptation of filling material over the cavity wall. To investigate the influence of various dry methods on the apical leakage, 125 palatal roots of extracted human maxillary molar teeth were used. The clinical crown of each tooth was removed at 10 mm from the root apex using a slow-speed diamond saw and water spray. Root canals of the all the specimens were prepared with step-back technique and filled with gutta-percha by lateral condensation method. After removing of the coronal 2 mm of filling material, the access cavities were closed with Cavit$^{(R)}$. Two coats of nail polish were applied to the external surface of each root. Apical three millimeters of each root was resected perpendicular to the long axis of the root with a diamond saw. Class I retrograde cavities were prepared with ultrasonic instruments. Retrocavities were washed with physiologic saline solution and dried with various methods or contaminated with human blood. Retrocavities were filled either with IRM, Super EBA or composite resin. All the specimens were immersed in 2% methylene blue solution for 7 days in an incubator at $37^{\circ}C$. The teeth were dissolved in 14 ml of 35% nitric acid solution and the dye present within the root canal system was returned to solution. The leakage of dye was quantitatively measured via spectrophotometric method. The obtained data were analysed statistically using one-way ANOVA and Duncan's Multiple Range Test. To evaluate the influence of various dry methods on the adaptation of filling material over the cavity wall, 12 palatal roots of extracted human maxillary molar teeth were used. After all the roots were prepared and filled, and retrograde cavities were made and filled as above, roots were sectioned longitudinally. Filling-dentin interface of cut surfaces were examined by scanning electron microscope. The results were as follows: 1. Cavities dried with paper point or compressed air showed less leakage than those dried with cotton pellet in Super EBA filled cavity (p<0.05). However, there was no difference between paper point- and compressed air-dried cavities. 2. When cavities were dried with compressed air, dentin-bonded composite resin-filled cavities showed less apical leakage than IRM- or Super EBA-filled ones (p<0.05). 3. Regardless of the filling material, cavities contaminated with human blood showed significantly more apical leakage than those dried with compressed air after saline irrigation (p<0.05). 4. Outer half of the cavity showed larger dentin-filling interface gap than inner half did when cavities were filled with IRM or Super EBA. 5. In all the filling material groups, cavities contaminated with blood or dried with cotton pellets only showed larger defects at the base of the cavity than ones dried with paper points or compressed air.

  • PDF