DOI QR코드

DOI QR Code

Effects of Various Biodegradable Mulching Films on Growth, Yield, and Soil Environment in Soybean Cultivation

콩 재배지에서 다양한 생분해성 멀칭필름 종류별 작물 생육, 수량 및 토양환경에 미치는 영향

  • Ye-Guon Kim (Dep. of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Yeon-Hu Woo (Dep. of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Hyun-Hwa Park (Dep. of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Do-Jin Lee (Dep. of Agricultural Education, Sunchon National Univ.) ;
  • Yong-In Kuk (Dep. of Oriental Medicine Resources, Sunchon National Univ.)
  • Received : 2024.02.07
  • Accepted : 2024.02.15
  • Published : 2024.03.01

Abstract

The objective of this study was to evaluate the safety of biodegradable mulching films in soybean (Glycine max) cultivation by measuring their effects on crop growth and yield, film decomposition and soil chemical and physical properties. In 2022 and 2023, plant height, branch number, chlorophyll contents, yield components, and yield of soybean did not vary significantly in areas using PE films and biodegradable mulching films. The light transmission rate of the biodegradable mulching films ranged from 6.4 to 15.8% when measured 112 days after soybean transplanting, and was higher, on average, in 2023 than in 2022. In both years, degradation of the biodegradable mulching films began 20 days after soybean transplantation and increased over time. In addition, remains of biodegradable mulching films were present in fields at soybean harvest and remained until 50 days after harvest. Decomposition rates of the biodegradable mulching films at 112 days after soybean transplanting ranged from 9.8 to 26.7% in 2022 and 13 to 36% in 2023. Although soil pH and EC varied based on the year and timing of measurements, there was no significant difference between areas that used biodegradable mulching films and PE films. Soil organic matter, nitrate and exchangeable cation contents such as Ca, Mg, and K were not significantly different in areas that used both PE films and biodegradable films. However, significantly higher levels of available phosphoric acid content were measured in areas that used biodegradable mulch films E, S, and T. Regardless of which films were used, there were no significant differences in the soil's physical properties. In 2022 and 2023, there was no difference between areas that used biodegradable mulch films and PE films. However, soil temperature in mulched areas was 2℃ higher and soil moisture was 5-15% higher than in non-mulched areas. Barley growth was not affected by being planted in soil that had been used for soybean cultivation with biodegradable films. Therefore, the biodegradable mulch films used in this study can be used without negatively affecting the growth, yield, and soil environment of soybeans.

본 연구의 목적은 다양한 생분해성 멀칭필름을 사용한 콩 재배지에서 작물 생육, 수량, 필름 분해율, 토양 화학성 및 물리성 등을 조사하여 안전하게 사용할 수 있는지를 알아보고자 수행하였다. 2022년과 2023년 콩의 초장, 분지수 및 엽록소 함량은 조사 시기에 상관없이 PE필름과 생분해성 멀칭필름 간에 유의적인 차이가 없었다. 또한 콩 수량구성 요소 및 수량은 시험기간(2022, 2023)에 상관없이 PE필름과 생분해성 멀칭필름 간에 유의적인 차이가 없었다. 생분해성 멀칭필름의 투광율은 콩 이식 후 112일에 6.4~15.8%를 보였고, 2022년보다는 2023년에 높았다. 2022년과 2023년 생분해성 멀칭필름의 붕괴정도는 콩 이식 후 20일부터 시작하였고, 시간이 경과할수록 증가하였다. 또한 콩 수확 후 포장에 잔재한 생분해성 멀칭필름은 수확 후 50일에 대부분 붕괴되었다. 콩 이식 후 112일에 생분해성 멀칭필름의 분해율의 경우 2022년에는 9.8~26.7%를 보였고, 2023년에는 13~36%을 보였다. 토양 pH와 EC는 조사 연도와 조사 시기에 따라 차이를 보였지만, 전반적으로 생분해성 멀칭필름과 PE필름 간에 유의적인 차이가 없었다. 토양 유기물, 질산태질소와 치환성양이온 함량은 생분해 필름 종류에 상관없이 PE필름과 유의적인 차이를 보이지 않았다. 그러나 유효인산 함량은 E, S 및 T 생분해성 멀칭필름이 PE필름에 비해 유의적으로 높았다. 토양 물리성(토성, 용적 밀도, 공극률 등)도 생분해성 멀칭필름과 PE필름 간의 유의적인 차이가 없었다. 2022년과 2023년 토양온도와 수분은 생분해성 멀칭필름과 PE필름 간에 차이가 없으나, 토양 온도는 무멀칭에 비해 2℃ 정도 상승하였고, 토양수분은 5~15% 정도 증가하였다. 생분해성 필름을 사용한 콩 재배지 토양에 후작물 보리 재배 시 생육에는 영향을 미치지 않았다. 따라서 본 연구에 사용된 생분해성 멀칭필름은 콩의 생육, 수량 및 토양환경에 부정적인 영향 없이 안전하게 사용할 수 있을 것으로 판단되었다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 공동연구사업(IRIS 과제번호: RS-2022-RD010403)의 지원으로 수행된 결과입니다. 연구과제의 실험 진행을 도와 주신 김희권, 정병준, 황인택, 김영옥, 남지영, 이옥기 연구원 분들께 감사드립니다.

References

  1. Brault, D., K. A. Stewart, and S. Jenni. 2002. Optical properties of paper and polyethylene mulches used for weed control in lettuce. HortScience. 37(1) : 87-91.
  2. Closas, L. M., J. Costa, and A. M. Pelacho. 2017. Soil Degradable Bioplastics for a Sustainable Modern Agriculture. pp. 67-104.
  3. Costa, R., A. Saraiva, L. Carvalho, and E. Duarte. 2017. The use of biodegradable mulch films on strawberry crop in Portugal. Sci. Hortic. 173 : 65-70.
  4. Cox, M. S. 2001. The Lancaster soil test method as an alternative to the Mehlich 3 soil test method. Soil Sci. 166 : 484-489.
  5. Cui, R. X. and B. W. Lee. 2001. Soil surface Energy balance and soil temperature in potato field mulched with recycled-paper and black plastic film. KJCS. 46(3) : 229-235.
  6. Fan, P., H. Yu, B. Xi, and W. Tan. 2022. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: are biodegradable plastics substitute or threat? Environ. Int. 163 : 1-12.
  7. Gao, X., D. Xie, and C. Yang. 2021. Effects of a PLA/PBAT biodegradable film mulch as a replacement of polyethylene film and their residues on crop and soil environment. Agric. Water Manag. 255 : 1-9.
  8. Jung, J. S., D. W. Park, and H. S. Choi. 2023. Effect of biodegradable film mulching on soil environment and onion growth and yield. Korean J. Corp Sci. 68(3) : 207-215.
  9. Kim, J. T., T. H. Kim, S. Kim, and K. H. Seo. 2016. Structural, thermal, and mechanical properties of PLA/PBAT/MEA blend. Polym. Korea. 40(3) : 371-379.
  10. Kim, W. H. and B. Hong. 1986. Effects of mulching materials on physical properties of soil and grain yield of sesame. KJCS. 31(3) : 260-269.
  11. Kononova, M. M. 1996. Soil Organic Matter: Its Nature, Its Role in Soil Formation and in Soil Fertility; Pergamon Press : Oxford, UK.
  12. Kyrikou, I. and D. Briassoulis. 2007. Biodegradation of Agricultural Plastic Films: A Critical Review. J. Polym. Environ. 15 : 125-150.
  13. Lee, H. J., M. J. Kim, H. L. Kim, Y. B. Kwack, J. K. Kwon, K. S. Park, H. G. Choi, and K. Bekhzod. 2015. Effects of biodegradable mulching film application on cultivation of garlic. Protected Hort. Plant Fac. 24(4) : 326-332.
  14. Li, B., S. Huang, H. Wang, M. Liu, S. Xue, D. Tang, W. Cheng, T. Fan, and X. Yang. 2021. Effects of plastic particles on germination and growth of soybean (Glycine max): A pot experiment under field condition. Environ. Pollut. 272 : 1-9.
  15. Liang, W., Y. Zhao, D. Xiao, J. Cheng, and J. Zhao. 2020. A biodegradable water-triggered chitosan/hydroxypropyl methylcellulose pesticide mulch film for sustained control of phytophthora sojae in soybean (Glycine max L. Merr.). J. Clean. Prod. 245 : 118943.
  16. Liu, Q., Y. Wang, J. Liu, X. Liu, Y. Dong, X. Huang, Z. Zhen, J. Lv, and W. He. 2022. Degradability and properties of PBAT-Based biodegradable mulch films in field and their effects on cotton planting. Polymers. 14 : 1-15.
  17. Meng, F., X. Yang, M. Riksen, and V. Geissen. 2022. Effect of different polymers of microplastics on soil organic carbon and nitrogen? a mesocosm experiment. Environ. Res. 204 : 1-10.
  18. Na, K., K. H. Lee, D. H. Lee, and Y. H. Bae. 2006. Biodegradable thermo-sensitive nanoparticles from poly(l-lactic acid)/poly (ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier. Eur. J. Pharm. Sci. 27 : 115-122.
  19. Ngouajio, M., R. Auras, R. T. Fernandez, and M. Rubio. 2008. Field performance of aliphatic-aromatic copolyester biodegradable mulch films in a fresh market tomato production system. HortTechnology. 18(4) : 605-610.
  20. Qin, M., C. Chen, B. Song, M. Shen, C. Weicheng, H. Yang, G. Zeng, and J. Gong. 2021. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 312 : 1-15.
  21. RDA. 2014. Food Crop Environment Analysis Method Handbook. National Institute of Crop Science. pp. 1-140.
  22. Reay, M. K., L. M. Greenfield, M. Graf, C. E. M. Lloyd, R. P. Evershed, D. R. Chadwick, and D. L. Jones. 2023. LDPE and biodegradable PLA-PBAT plastics differentially affect plant-soil nitrogen partitioning and dynamics in a Hordeum vulgare mesocosm. J. Hazard. Mater. 447 : 1-10.
  23. SAS (Statistical Analysis System). 2000. SAS/STAT Users Guide, Version 7. Statistical Analysis System Institute, Cary, NC, USA.
  24. Shen, M., B. Song, C. Zhou, E. Almatrafi, T. Hu, G. Zeng, and Y. Zhang. 2022. Recent advances in impacts of microplastics on nitrogen cycling in the environment: A review. Sci. Total Environ. 815 : 1-9.
  25. Sintim, H. Y., S. Bandopadhyay, M. E. English, A. I. Bary, J. L. Gonzalez, J. M. DeBruyn, S. M. Schaeffer, C. Miles, and M. Flury. 2021. Four years of continuous use of soil-biodegradable plastic mulch: impact on soil and groundwater quality. Geoderma. 381 : 1-10.
  26. Somanathan, H., R. Sathasivam, S. Sivaram, S. M. Kumaresan, M. S. Muthuraman, and S. U. Park. 2022. An update on polyethylene and biodegradable plastic mulch films and their impact on the environment. Chemosphere. 307(3) : 135893.
  27. Souza, A. G., R. R. Ferreira, J. Harada, and D. S. Rosa. 2020. Field performance on lettuce crops of poly(butyleneadipate-co-terephthalate)/polylactic acid as alternative biodegradable composites mulching films. J. Appl. Polym. Sci. 138(11) : 1-13.
  28. Steinmetz, Z., C. Wollmann, M. Schaefer, C. Buchmann, J. David, J. Troger, K. Munoz, O. Fror, and G. E. Schaumann. 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 550 : 690-705.
  29. Tarara, J. M., 2000. Microclimate modification with plastic mulch. Hortscience. 35 : 169-180.
  30. Touchaleaumem, F., H. A. Coussy, G. Cesar, G. Raffard, N. Gontard, and E. Gastaldi. 2018. How performance and fate of biodegradable mulch films are impacted by field ageing. J. Polym. Environ. 26 : 2588-2600.
  31. Yin, M., Y. Li, H. Feng, and P. Chen. 2019. Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth. Agric. Water Manag. 216 : 127-137.
  32. Zhang, M., Y. Xue, T. Jin, K. Zhang, Z. Li, C. Sun, Q. Mi, and Q. Li. 2022. Effect of long-term biodegradable film mulch on soilphysicochemical and microbial properties. Toxics. 129(10) : 1-14.