• Title/Summary/Keyword: 질량하중 효과

Search Result 53, Processing Time 0.025 seconds

Dynamic Response Analysis of Stiffened Plates Subjected to Moving Loads (이동하중을 받는 보강판의 동응답해석)

  • 정정훈;정태영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.124-129
    • /
    • 1992
  • 이동 집중력 및 집중질량에 의한 이동하중을 받는 직사각형 보강판에 대하 여 보강재효과집중 모델링방법에 의거하여 보강판을 등방성 박판 및 보강재 효과를 반영한 등가보요소로 이루어진 판-보 조합체로 유한요소 모델링하고 Newmark의 직접 시간적분법을 이용한 동응답 해석방법을 정식화하였다. 일 련의 수치계산 예를 통하여 본 연구에서 제시한 방법이 이동하중을 받는 보 강판의 동응답 해석문제에 효과적으로 적용될 수 있음을 확인하였다. 아울러 parametric study를 통하여 이동하중이 작용하는 보강판의 동응답특성은 이 동하중의 질량효과를 고려하는 경우와 고려하지 않는 경우 매우 달라지며, 이동하중에 의한 동적응답은 이동속도가 증가할수록 정하중에 의한 응답보 다 증폭되어 나타나고 증폭비율이 질량효과를 고려할 경우 훨씬 더 커짐을 확인하였다.

  • PDF

Finite Element Analysis of Continuous Beam Vibration under Pedestrian Loading Considering Moving Mass Effect (이동 질량 효과를 고려한 연속 보의 보행하중 진동 유한요소 해석)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.309-316
    • /
    • 2022
  • This study proposes a finite element analysis method that can analyze the vibration of a beam by considering the inertia effect of moving masses in a vertical direction. The proposed method is effective when a precise interaction analysis is not required. The inertial effects of the moving masses are included in the equation of motion, and the interaction forces between the masses and the beam are considered only as external loads. Time domain analyses were performed using Abaqus, a general-purpose finite element analysis software, and an implementation method using multi-point constraints wais presented to link the displacements of the beam element nodes and moving rigid masses. The proposed method was verified by comparing its solution with that obtained using an existing analytical method, and the analysis results for continuous beam vibrations under dynamic gait loadings were used to examine the mass effect of pedestrians.

Improvement in Sensitivity by Increasing the Frequency of SAW Sensors for DNA Detection (DNA 측정용 SAW 센서의 주파수 증대에 의한 감도향상)

  • Sakong, Jung-Yul;Kim, Jae-Ho;Lee, Soo-Suk;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • In this paper. we have studied improvement in sensitivity by increasing the frequency of SAW sensors for detecting the immobilization and hybridization of DNA. The sensor consists of twin SAW delay lines operating at 200MHz, a sensing channel and a reference channel. fabricated on $36^{\circ}$ rotated Y-cut X-propagation $LiTaO_3$ crystals. The optimum concentration of probe and target DNA was decided for the improvement of detection mechanism. and digital syringe pump system was used to reduce the human errors. The hybridization between immobilized probe DNA and target DNA on the gold-coated delay line results in mass loading on the delay line of the sensing channel. Thus, the relative frequency change was monitored in relation to the mass loading. The measurement results showed a good response of the sensor to the DNA hybridization with a maximum sensitivity level up to 0.066ng/m1/Hz.

Investigation on Seismic-Response Characteristics and Optimal Design Parameters of Tuned Mass Damper Considering Site Effects (지반특성에 따른 동조질량감쇠기의 지진응답특성 및 최적설계변수)

  • Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5306-5313
    • /
    • 2011
  • Most previous studies for finding optimal design parameters of a tuned mass damper(TMD) have been focused on the harmonic excited single-degree-of freedom system. In this study, optimal values of damping ratio and tuning frequency ratio of a TMD applied to control a seismically excited structure are investigated through numerical analyses. Considering that the structural responses due to earthquake loads are strongly dependent on the soil condition, the site effects on the optimal parameters of the TMD are studied and compared to those presented by previous studies. Numerical analyses results indicate that better control performance can be obtained by using the parameters proposed by this study in the seismic application of the TMD.

The Dynamic Effect of Highspeed Trains on Railway Bridges (고속철도 차량의 주행이 교량에 미치는 충격효과)

  • Yu, Chul Soo;Kang, Young Jong;Kim, Jong Heun;Kweon, Jae Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.187-199
    • /
    • 1998
  • The highspeed railway bridge which support continuous and high moving mass evalute the dynamic state and make the displacement of the bridge makes more or less, but up to this time the bridges are designed by the static design concept. for example when we design bridge we use impact factor, which only times the static load makes dynamic load. But becouse it simples. it can't express all of the effects. And so, in this report we study the modeling method of the moving mass and the dynamic factor.

  • PDF

A Moving Track Test Using Tire-Wheel Tracking Machine (고무바퀴트랙하중 시험기를 이용한 왕복하중실험)

  • Sung, Ik-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.250-256
    • /
    • 2010
  • In this paper, an analytical and experimental study is performed in order to determine the effects of interaction between vehicle and bridge superstructure. For this purpose an improved wheel tracking machine and an adequate single span bridge are designed. Results presented in the paper show that wheel tracking machine including moving mass effects can demonstrate more accurate dynamic interaction between vehicle and structure.

The Control of Vertical Vibration of Building Slabs using Tuned Mass Dampers (동조질량 감쇠기에 의한 건물 바닥판의 연직진동제어)

  • 이동근;김진구;안상경
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.103-114
    • /
    • 1998
  • The floors of building structures equipped with vibrating machines can be susceptible to large vibration as a result of resonance or beating. Such a vibration can be reduced efficiently by using tuned mass dampers. However, the effectiveness of the damper depends greatly on the location and the natural frequency of the damper. To determine the optimum damper location is especially important since the dynamic behavior of a building structure varies with the location of the input loading. To this end, it is intended to decide the location and natural frequency of tuned mass dampers for reducing vibration of both loaded floors and floors located nearby the loaded floors considering the location and frequency components of the loading. The Vector composition method and the super elements are used th obtain the responses in steady states, and the optimum damper location and natural frequencies were found with the given damper mass.

  • PDF

Restrained Stroke Active Tuned Mass Damper (제한진폭 능동형 질량동조감쇠장치)

  • Kwon, Jang-Sub;Chang, Sung-Pil;Yoo, Hong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.9-22
    • /
    • 2005
  • The allowed operation space for the mass damper in an active tuned mass damper (ATMD) system is limited for most civil structures. In this study, a restrained stroke active tuned mass damper (RS-ATMD) system with a end-spring and a holder that reduces the stroke of the mass damper with maintaining the control effect durably is proposed. This new control system functions as a conventional ATMD within the predetermined stroke limitation under small excitation and as an RS-ATMD beyond that limitation under large excitation. A new control algorithm considering such an operation principle of the RS-ATMD are also provided. Parameteric study for the various design factors of the RS-ATMD is conducted and the control effectiveness are investigated in comparison with the ATMD. Exposed to sinusoidal or impact load, the RS-ATMD system shows the considerable reduction of the maximum stroke of the mass damper with the slight diminution in the control effectiveness. Excited by random load, it also shows the considerable reduction of the maximum stroke of the mass damper not allowing the diminution in the control effectiveness.

Vibration Serviceability Evaluation of a Single Span Steel-Concrete Composite Foot Bridge under Dynamic Pedestrian Loadings Considering Moving Mass Effect (이동 질량 효과를 고려한 단경간 강합성 보행교의 보행 하중 진동 사용성 평가)

  • Wonsuk Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.75-83
    • /
    • 2023
  • In this paper, we present the analysis results on the vibration serviceability of a pedestrian bridge considering the effect of pedestrian moving mass inertia. Using dynamic finite element analysis, we considered different walking scenarios, including pedestrian density, walking speed, random walking, and synchronized walking, to analyze the acceleration response of a 40m long single-span bridge with a steel composite box cross section. We showed that the equivalent fixed mass analysis method did not significantly differ from the moving mass analysis in the random walk scenario and a wider frequency excitation band may be useful to consider when evaluating vibration serviceability in a random walk scenario.

Dynamic Analysis of Offshore Structures Considering External Fluid-Structure Interaction (외부유체-구조물의 상호작용을 고려한 해양구조물의 동적해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.271-281
    • /
    • 2005
  • The effects of radiation damping is used to compensate the truncated boundary which is relatively close to the structure-fluid interface in the fluid element surrounding the submerged structures. An efficient ring element is presented to model the shell and fluid element which fully utilizes the characteristics of the axisymmetry. The computational model uses the technique which separate the meridional shape and circumferential wave mode and gets similar result with the exact solution in the eigenvalues and the earthquake analysis. The fluid-structure interaction techniques is developed in the finite element analysis of two dimensional problems using the relations between pressure, nodal unknown acceleration and added mass assuming the fluid to be invicid, incompressible and irrotational. The effectiveness and efficiency of the technique is demonstrated by analyzing the free vibration and seismic analysis using the added mass matrix considering the structural deformation effect.