• Title/Summary/Keyword: 질감 영상

Search Result 315, Processing Time 0.023 seconds

Classification of Scaled Textured Images Using Normalized Pattern Spectrum Based on Mathematical Morphology (형태학적 정규화 패턴 스펙트럼을 이용한 질감영상 분류)

  • Song, Kun-Woen;Kim, Gi-Seok;Do, Kyeong-Hoon;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.116-127
    • /
    • 1996
  • In this paper, a scheme of classification of scaled textured images using normalized pattern spectrum incorporating arbitrary scale changes based on mathematical morphology is proposed in more general environments considering camera's zoom-in and zoom-out function. The normalized pattern spectrum means that firstly pattern spectrum is calculated and secondly interpolation is performed to incorporate scale changes according to scale change ratio in the same textured image class. Pattern spectrum is efficiently obtained by using both opening and closing, that is, we calculate pattern spectrum by opening method for pixels which have value more than threshold and calculate pattern spectrum by closing method for pixels which have value less than threshold. Also we compare classification accuracy between gray scale method and binary method. The proposed approach has the advantage of efficient information extraction, high accuracy, less computation, and parallel implementation. An important advantage of the proposed method is that it is possible to obtain high classification accuracy with only (1:1) scale images for training phase.

  • PDF

Block Classification of Document Images Using the Spatial Gray Level Dependence Matrix (SGLDM을 이용한 문서영상의 블록 분류)

  • Kim Joong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1347-1359
    • /
    • 2005
  • We propose an efficient block classification of the document images using the second-order statistical texture features computed from spatial gray level dependence matrix (SGLDM). We studied on the techniques that will improve the block speed of the segmentation and feature extraction speed and the accuracy of the detailed classification. In order to speedup the block segmentation, we binarize the gray level image and then segmented by applying smoothing method instead of using texture features of gray level images. We extracted seven texture features from the SGLDM of the gray image blocks and we applied these normalized features to the BP (backpropagation) neural network, and classified the segmented blocks into the six detailed block categories of small font, medium font, large font, graphic, table, and photo blocks. Unlike the conventional texture classification of the gray level image in aerial terrain photos, we improve the classification speed by a single application of the texture discrimination mask, the size of which Is the same as that of each block already segmented in obtaining the SGLDM.

  • PDF

Image Retrieval Using Edge-based Variable Block DC (에지 기반 가변 블록 DC를 이용한 영상 검색)

  • 김동우;서은주;장언동;안재형
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.268-271
    • /
    • 2002
  • 현재 우리가 접하는 영상은 모양, 색상, 질감 등의 성분을 이용한 검색 방법이 필요하다. 이중 질감 특성을 고려한 DC 영상 검색 기법은 구현이 간단하고 검색이 빠른 장점이 있다. 특히 블록을 가변으로 하였을 경우 검색 속도와 정확성을 효율적으로 높일 수 있다. 그러나 기존의 방법은 가변 블록을 하기 위하여 단순히 이진 영상을 가지고 객체 유무를 판단하므로 객체 영역 판단의 정확성이 낮아지고, 계산량이 많아지는 단점이 있다. 이러한 문제점을 해결하기 위해 객체 영역 판단에 에지를 이용하는 방법을 제안한다. 제안한 방법의 경우 객체 영역 판단의 정확성을 높이고 계산량을 줄일 수 있다.

  • PDF

Texture-aware Blur Detection (질감 특징을 고려한 영상 흐려짐 검출 방법)

  • Jeong, Chanho;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.58-66
    • /
    • 2020
  • The blur effect, which is generated by various external factors such as out-of-focus and object movement, degrades high-frequency components in the original sharp image. Based on this observation, we propose a novel method for blur detection using textural features. Specifically, the proposed method simultaneously adopts learning-based and watershed-based textural features, which effectively detect the blur on various situations. Moreover, we employ the region-based refinement to improve the processing time while also increasing detection accuracy. Experimental results demonstrate that the proposed method provides the competitive performance compared to previous approaches in literature.

Rate-Distortion Based Image Segmentation Using Recursive Merging and Texture Approximation (질감 근사화 및 반복적 병합을 이용한 율왜곡 기반 영상 분할)

  • 정춘식;임채환;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.156-166
    • /
    • 2000
  • A rate-distortion based segmentation using recursive merging is presented, which considers texture as a homogeneity by adopting the procedure of a generalized texture approximation. The texture in a region is approximated by SA-DCT and a set of two uniform quantizers with fixed step sizes, one for DC and another for AC. Using the approximated texture, we calculated the rate-distortion based cost. The segmentation using recursive merging is performed by using the rate-distortion based cost. Experimental results for 256$\times$256 Lena show that the region-based coding using the proposed segmentation yields the PSNR improvements of 0.8~ 1.0 dB and 1.2~1.5 dB over that using the rate-distortion based segmentation with DC approximation only and JPEG, respectively.

  • PDF

Satellite Image Classification Based on Color and Texture Feature Vectors (칼라 및 질감 속성 벡터를 이용한 위성영상의 분류)

  • 곽장호;김준철;이준환
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.183-194
    • /
    • 1999
  • The Brightness, color and texture included in a multispectral satellite data are used as important factors to analyze and to apply the image data for a proper use. One of the most significant process in the satellite data analysis using texture or color information is to extract features effectively expressing the information of original image. It was described in this paper that six features were introduced to extract useful features from the analysis of the satellite data, and also a classification network using the back-propagation neural network was constructed to evaluate the classification ability of each vector feature in SPOT imagery. The vector features were adopted from the training set selection for the interesting region, and applied to the classification process. The classification results showed that each vector feature contained many merits and demerits depending on each vector's characteristics, and each vector had compatible classification ability. Therefore, it is expected that the color and texture features are effectively used not only in the classification process of satellite imagery, but in various image classification and application fields.

Block-based Color Image Segmentation Using CLS Image (색차 휘도합 영상을 이용한 블록 기반 칼라 영상 분할)

  • 곽노윤
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.271-276
    • /
    • 2000
  • 본 논문은 칼라 성분들간의 차분 영상과 휘도 영상을 이용하여 산출한 색차 휘도합 영상을 대상으로 블록에 기반한 영상 분할을 수행하여 객체의 형상 정보를 추출함으로써 분할 특성을 개선한 블록 기반 칼라 영상 분할 기법에 관한 것이다. 우선, R, G, B 영상들 간의 차분 성분들을 구하여 합산한 후, 이를 정규화하여 색차합 영상을 구한다. 다음으로 화소 단위로 휘도 영상의 상위 2비트와 정하화된 색차합 영상의 하위 6비트를 결합하여 색차 휘도합 영상을 얻는다. 이후, 기설정된 크기의 블록으로 분할된 색차 휘도합 영상의 각 블록을 질감 블록과 단순 블록 및 에지 블록으로 분류하고 각 유형의 블록별로 병합한 후, 기설정된 마커 배정 규칙에 따라 선택적으로 마커를 부여한다. 마지막으로, 마커가 부여되지 않은 블록을 대상으로 화소 단위의 워터쉐드 알고리즘을 적용함으로써 자연스러운 형상 정보를 얻을 수 있다. 컴퓨터 시뮬레이션 결과를 통해 고찰할 때, 제안된 방범은 질감 영역에서의 과분할의 문제와 과도한 연산량의 부담을 효과적으로 경감시킬 수 있으나, 더불어, 영상 분할용 파라미터들의 민감도가 낮아 서로 다른 화소 분포 특성온 갖는 영상들에 전역적인 파라미터들사용할 수 있을 뿐만 아니라 특히, 색차 휘도합 영상에 반영된 색차 성분에 힘입어 저대조 경계면에서의 분할 특성을 현저히 개선시킬 수 있는 이점이 있다.

  • PDF

Implementation of the System Converting Image into Music Signals based on Intentional Synesthesia (의도적인 공감각 기반 영상-음악 변환 시스템 구현)

  • Bae, Myung-Jin;Kim, Sung-Ill
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.254-259
    • /
    • 2020
  • This paper is the implementation of the conversion system from image to music based on intentional synesthesia. The input image based on color, texture, and shape was converted into melodies, harmonies and rhythms of music, respectively. Depending on the histogram of colors, the melody can be selected and obtained probabilistically to form the melody. The texture in the image expressed harmony and minor key with 7 characteristics of GLCM, a statistical texture feature extraction method. Finally, the shape of the image was extracted from the edge image, and using Hough Transform, a frequency component analysis, the line components were detected to produce music by selecting the rhythm according to the distribution of angles.

Texture Analysis of Carcinoma Cell Tissue Image based on Wavelet Transform (Wavelet 변환에 기반한 암세포 조직 영상의 질감 분석)

  • 최현주;이병일;이연숙;최홍국
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.305-308
    • /
    • 2000
  • 암의 진행 정도를 판단하기 위한 암세포 조직영상의 분석은 그 대상이 되는 영상의 다양성과 잡음으로 인해 정확한 분석이 어렵다. 특히, 암의 진행 정도를 판단하는데 있어서 중요한 요인인 세포핵의 variation에 따른 order/disorder 정도를 객관적 수치로 정량화하기 위해서는, 각 기(stage)에 따른 암의 진행정도를 가장 잘 나타낼 수 있는 특징값 추출이 필수적이다. 본 논문에서는 가장 유효한 특징값을 추출하기 위하여, 공간 영역과 주파수 영역에서 그 지역적 특징을 잘 나타내는 wavelet 변환을 적용한 후, 분할 된 서브 밴드 중 고대역 서브 밴드에서 질감 특징을 추출하고, 추출 된 질감 특징값들이 암의 진행 정도에 따른 각 집단간에 유의한 차이를 나타내는지에 대한 유의성을 검증하기 위하여, 다변량 통계학적 분석 방법을 사용하여 비교분석 하였다.

  • PDF

Computing Similarities between Segmented Objects in the image for Content-Based Retrieval (내용기반 검색을 위한 분할된 영상객체간 유사도 판별)

  • 유헌우;장동식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.358-360
    • /
    • 2001
  • 본 논문에서는 내용기반 영상검색중 객체기반검색 방법에 대해 다룬다. 먼저 색상과 질감정보가 동일한 영역을 VQ알고리즘을 이용해 군집화 함으로써 동일한 영역을 추출하는 새로운 영상분할기법을 제안하고, 분할 후에 분할에 사용된 색상과 질감정보, 객체간의 위치정보와 영역크기정보를 가지고 객체간 유사도를 판별하여 영상을 검색한다. 이 때 사용되는 색상의 범위의 몇 개의 주요한 색상으로 표시하기 위해 색상테이블을 사용하고 인간의 인지도에 의해 다시 그룹화 함으로써 계산량과 데이터저장의 효율성을 높인다. 영상검색시에는 질의 영상의 관심객체와 비교대상이 되는 데이터베이스 영상의 여러 객체와의 유사성을 판단하여 영상간의 유사도를 계산하는 일대다 매칭 방법(One Object to Multi Objects Matching)과 질의 영상의 여러 객체와 데이터베이스영상의 여러 객체간의 유사도를 판단하는 다대다 매칭 방법(Multi Objects to Multi Objects Matching)을 제안한다. 또한, 제안된 시스템은 고속검색을 실현하기 위해 주요한 색상값을 키(key)색인화 해서 일치가능성이 없는 영상들은 1차적으로 제거함으로써 검색시간을 줄일 수 있도록 했다.

  • PDF