Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.3-5
/
1999
본 논문에서는 진화 하드웨어에 기반한 자율 이동 로봇의 온라인 학습 기법에 관하여 소개하고자 한다. 진화 하드웨어는 실행 시간중에 하드웨어 회로 구성을 변경시킬 수 있는 새로운 개념의 FPGA이다. 제어 프로그램은 진화 하드웨어상에 트리 형식으로 구현되며 유전자 프로그래밍을 이용하여 학습하게 된다. 로봇의 환경 탐사가 진행됨에 따라 입력되는 센서 정보에 기반하여 제어 프로그램은 학습을 수행하게 되며, 노드 돌연변이의 유전 연산자를 이용하여 진화한다. 제어 프로그램의 게이트 회로는 학습의 진행에 맞추어 실행 시간중에 보다 적합도가 높은 방향으로 발전한다. 본 논문에서는 진화 하드에어를 이용한 학습 방식과 FPGA 구현 및 로봇 제어에의 응용에 대한 실험 결과 등을 설명할 것이다.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.3
/
pp.441-446
/
2010
Each robot decides and behaviors themselves surrounding circumstances in the swarm robot system. Robots have to conduct tasks allowed through cooperation with other robots. Therefore each robot should have the ability to learn and evolve in order to adapt to a changing environment. In this paper, we proposed learning based on Q-learning algorithm and evolutionary using Harmony Search algorithm and are trying to improve the accuracy using Harmony Search Algorithm, not the Genetic Algorithm. We verify that swarm robot has improved the ability to perform the task.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.6-8
/
1999
시뮬레이션 환경이나 실제 환경에서 이동 로봇 제어기를 진화 알고리즘으로 만들어내는 연구가 최근 활발하다. 이전의 연구에서는 기존의 단순한 진화 알고리즘이 환경에 제한된 제어기를 만들어 내는 문제점을 해결하기 위한 방법으로 셀룰라 오토마타 기반 신경망의 점증적 진화방법을 제시하였다. 점증적 진화 방법은 초기에 간단한 행동으로 해결할 수 있는 환경에 맞도록 제어기를 진화시킨 다음, 점차 복잡한 행동이 요구되는 환경에서 제어기를 점증적으로 진화시킨다. 실험결과, 점증적 진화의 방법이 좀 더 효율적으로 로봇을 진화시키고 환경의 변화에 보다 강한 것을 알 수 있었다. 그러나 이전연구에서의 점증적 진화 방법은 한 단계에서 진화가 끝난 후 다음 단계로 넘어갈 개체를 사람이 선택해야 하는 문제가 있었다. 본 논문에서는 이러한 문제점을 해결하기 위한 다양한 방법을 제시하고 실험을 통해 그 유용성을 보이고자 한다.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.5
/
pp.712-717
/
2008
In swarm robot systems, each robot must act by itself according to the its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, reinforcement learning method with SVM based on structural risk minimization and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. By distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning that basis of SVM is adopted in this paper.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.2
/
pp.279-284
/
2009
In swarm robot systems, each robot must behaves by itself according to the its states and environments, and if necessary, must cooperates with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, reinforcement learning method using many SVM based on structural risk minimization and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. By distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning that basis of Cascade SVM is adopted in this paper.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.28-31
/
2002
본 논문에서는 자율 이동 로봇의 학습을 위해 신경망과 진화 알고리즘을 이용한 방법을 제안한다. 이것은 자연계의 생물이 진화와 학습을 통해 환경에 적응해 나가는 방식과 유사하다. 또한 본 논문에서는 행동기반 제어 방법인 포섭구조를 이용해 로봇의 행동을 제어하는 방법을 제안한다 포섭 구조는 행동 규칙을 병렬적으로 모듈화 하여 낮은 레벨에서는 기본적인 행동을 담당하고, 높은 레벨에서는 좀 더 복잡한 행동을 담당하는 구조로 되어있다 따라서 각 행동 레벨이 협조를 함으로써 복잡한 임무를 수행할 수 있다. 포섭 구조에서 각 레벨의 제어기는 신경 망으로 구성하며 각 행동 레벨이 서로 영향을 주고받으며 진화함으로써 주어진 임무를 달성하도록 한다. 제안된 방법은 자율 이동 로봇인 Khepera 로봇을 이용해 실제 환경에서 구현함으로서 그 유효성을 입증한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
1998.05a
/
pp.308-314
/
1998
본 논문에서는 신경망의 새로운 구성방법을 제안한다. 이 제안 방법은 두 가지 기본적인 아이디어인 병렬 도태식 평가법, NN의 내부구조를 표현한 규칙(rule)의 진화를 기초로 하고 있다. 진화형 NN의 제안, 그 구축방법, 그리고 진화형 NN을 이용한 응용 예로서 이동장애물 회피를 문제로 삼아서 로봇의 이동 경로 simulation에 의한 실험결과를 보인다.
The cleaning robot is popularly used as a home appliance. The state-of-the-art cleaning robot can clean more efficiently by using information gathered from its sensor, which is difficult for low-price cleaning robots due to limitation in this aspect. In this paper, we suggested a method for the moving pattern of cleaning robot based on grammatical evolution. Optimized program is generated by using moving pattern grammar, which is defined by Backus-Naur form. In addition, conditional probability is used between each of the grammar elements during the program creation process. The proposed method is evaluated by robot simulation in order to verify its performance and further compare it with existing algorithms. The experiment results showed that the proposed method is better than the compared algorithms.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.347-350
/
2008
모듈라 뱀형 로봇은 고장에 대한 강인성과 환경에 유연한 이동 특성을 가지고 있으나, 제어가 어렵다는 단점이 있다. 진화연산을 로봇에 이용한 많은 연구가 진행되어 왔지만, 어떤 기법의 진화연산이 문제에 더 적합하고, 높은 성능을 얻을 수 있는지에 대한 비교는 거의 이루어지지 않고 있다. 본 논문은 두 가지 대표적인 진화기법인 GA와 GP를 이용하여 모듈라 뱀형 로봇의 이동 제어를 수행하였다. 대상 로봇은 H/W로 구현이 가능한 실제 모듈로 구성되었고, Webots을 사용하여 시뮬레이션 실험을 수행하였으며, GA와 GP 기법에 의한 결과를 비교 분석하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.2
/
pp.131-137
/
2006
In swarm robot systems, each robot must behaves by itself according to the its states and environments, and if necessary, must cooperates with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, the new learning and evolution method based on reinforcement learning having delayed reward ability and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. Reinforcement learning having delayed reward is still useful even though when there is no immediate reward. And by distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning is adopted in this paper. we verify the effectiveness of the proposed method by applying it to cooperative search problem.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.