• Title/Summary/Keyword: 진화 로봇

Search Result 151, Processing Time 0.032 seconds

On-line Learning by Genetic Programming (진화 하드웨어상에서 유전자 프로그래밍에 의한 온라인 학습)

  • Seok, Ho-Sik;Lee, Kwang-Ju;Yi, Kang;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.3-5
    • /
    • 1999
  • 본 논문에서는 진화 하드웨어에 기반한 자율 이동 로봇의 온라인 학습 기법에 관하여 소개하고자 한다. 진화 하드웨어는 실행 시간중에 하드웨어 회로 구성을 변경시킬 수 있는 새로운 개념의 FPGA이다. 제어 프로그램은 진화 하드웨어상에 트리 형식으로 구현되며 유전자 프로그래밍을 이용하여 학습하게 된다. 로봇의 환경 탐사가 진행됨에 따라 입력되는 센서 정보에 기반하여 제어 프로그램은 학습을 수행하게 되며, 노드 돌연변이의 유전 연산자를 이용하여 진화한다. 제어 프로그램의 게이트 회로는 학습의 진행에 맞추어 실행 시간중에 보다 적합도가 높은 방향으로 발전한다. 본 논문에서는 진화 하드에어를 이용한 학습 방식과 FPGA 구현 및 로봇 제어에의 응용에 대한 실험 결과 등을 설명할 것이다.

  • PDF

Behavior Learning and Evolution of Swarm Robot based on Harmony Search Algorithm (Harmony Search 알고리즘 기반 군집로봇의 행동학습 및 진화)

  • Kim, Min-Kyung;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.441-446
    • /
    • 2010
  • Each robot decides and behaviors themselves surrounding circumstances in the swarm robot system. Robots have to conduct tasks allowed through cooperation with other robots. Therefore each robot should have the ability to learn and evolve in order to adapt to a changing environment. In this paper, we proposed learning based on Q-learning algorithm and evolutionary using Harmony Search algorithm and are trying to improve the accuracy using Harmony Search Algorithm, not the Genetic Algorithm. We verify that swarm robot has improved the ability to perform the task.

Automatic Generation of Seed Individuals for Efficient Incremental Evolutionary Learning (효율적인 점증적 진화학습을 위한 씨앗개체의 자동생성)

  • 송금범;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.6-8
    • /
    • 1999
  • 시뮬레이션 환경이나 실제 환경에서 이동 로봇 제어기를 진화 알고리즘으로 만들어내는 연구가 최근 활발하다. 이전의 연구에서는 기존의 단순한 진화 알고리즘이 환경에 제한된 제어기를 만들어 내는 문제점을 해결하기 위한 방법으로 셀룰라 오토마타 기반 신경망의 점증적 진화방법을 제시하였다. 점증적 진화 방법은 초기에 간단한 행동으로 해결할 수 있는 환경에 맞도록 제어기를 진화시킨 다음, 점차 복잡한 행동이 요구되는 환경에서 제어기를 점증적으로 진화시킨다. 실험결과, 점증적 진화의 방법이 좀 더 효율적으로 로봇을 진화시키고 환경의 변화에 보다 강한 것을 알 수 있었다. 그러나 이전연구에서의 점증적 진화 방법은 한 단계에서 진화가 끝난 후 다음 단계로 넘어갈 개체를 사람이 선택해야 하는 문제가 있었다. 본 논문에서는 이러한 문제점을 해결하기 위한 다양한 방법을 제시하고 실험을 통해 그 유용성을 보이고자 한다.

  • PDF

Behavior Learning and Evolution of Swarm Robot System using Support Vector Machine (SVM을 이용한 군집로봇의 행동학습 및 진화)

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.712-717
    • /
    • 2008
  • In swarm robot systems, each robot must act by itself according to the its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, reinforcement learning method with SVM based on structural risk minimization and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. By distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning that basis of SVM is adopted in this paper.

Behavior Learning and Evolution of Swarm Robot System using Q-learning and Cascade SVM (Q-learning과 Cascade SVM을 이용한 군집로봇의 행동학습 및 진화)

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.279-284
    • /
    • 2009
  • In swarm robot systems, each robot must behaves by itself according to the its states and environments, and if necessary, must cooperates with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, reinforcement learning method using many SVM based on structural risk minimization and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. By distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning that basis of Cascade SVM is adopted in this paper.

Co-Evolution of Subsumption Architecture for Behavior Learning of Autonomous Mobile Robot (자율 이동 로봇의 행동 학습을 위한 포섭 구조의 공진화)

  • 김현영;허광승;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.28-31
    • /
    • 2002
  • 본 논문에서는 자율 이동 로봇의 학습을 위해 신경망과 진화 알고리즘을 이용한 방법을 제안한다. 이것은 자연계의 생물이 진화와 학습을 통해 환경에 적응해 나가는 방식과 유사하다. 또한 본 논문에서는 행동기반 제어 방법인 포섭구조를 이용해 로봇의 행동을 제어하는 방법을 제안한다 포섭 구조는 행동 규칙을 병렬적으로 모듈화 하여 낮은 레벨에서는 기본적인 행동을 담당하고, 높은 레벨에서는 좀 더 복잡한 행동을 담당하는 구조로 되어있다 따라서 각 행동 레벨이 협조를 함으로써 복잡한 임무를 수행할 수 있다. 포섭 구조에서 각 레벨의 제어기는 신경 망으로 구성하며 각 행동 레벨이 서로 영향을 주고받으며 진화함으로써 주어진 임무를 달성하도록 한다. 제안된 방법은 자율 이동 로봇인 Khepera 로봇을 이용해 실제 환경에서 구현함으로서 그 유효성을 입증한다.

  • PDF

Application to moving obstacles avoidance robot using Emergent Neural Networks (진화형 신경망(NN)을 이용한 이동장애물 회피 로봇의 응용)

  • 박윤명;손준익;한창훈;임영도;최부귀
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.308-314
    • /
    • 1998
  • 본 논문에서는 신경망의 새로운 구성방법을 제안한다. 이 제안 방법은 두 가지 기본적인 아이디어인 병렬 도태식 평가법, NN의 내부구조를 표현한 규칙(rule)의 진화를 기초로 하고 있다. 진화형 NN의 제안, 그 구축방법, 그리고 진화형 NN을 이용한 응용 예로서 이동장애물 회피를 문제로 삼아서 로봇의 이동 경로 simulation에 의한 실험결과를 보인다.

  • PDF

Designing the Moving Pattern of Cleaning Robot based on Grammatical Evolution with Conditional Probability Table (문법적 진화기법과 조건부 확률을 이용한 청소 로봇의 이동 패턴 계획)

  • Gwon, Soon-Joe;Kim, Hyun-Tae;Ahn, Chang Wook
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.4
    • /
    • pp.184-188
    • /
    • 2016
  • The cleaning robot is popularly used as a home appliance. The state-of-the-art cleaning robot can clean more efficiently by using information gathered from its sensor, which is difficult for low-price cleaning robots due to limitation in this aspect. In this paper, we suggested a method for the moving pattern of cleaning robot based on grammatical evolution. Optimized program is generated by using moving pattern grammar, which is defined by Backus-Naur form. In addition, conditional probability is used between each of the grammar elements during the program creation process. The proposed method is evaluated by robot simulation in order to verify its performance and further compare it with existing algorithms. The experiment results showed that the proposed method is better than the compared algorithms.

Locomotion Control of Modular Robot Using GA and GP (GA 와 GP 를 이용한 모듈라 로봇 이동 제어)

  • Jang, Jae-Young;Hyun, Soo-Hwan;Seo, Ki-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.347-350
    • /
    • 2008
  • 모듈라 뱀형 로봇은 고장에 대한 강인성과 환경에 유연한 이동 특성을 가지고 있으나, 제어가 어렵다는 단점이 있다. 진화연산을 로봇에 이용한 많은 연구가 진행되어 왔지만, 어떤 기법의 진화연산이 문제에 더 적합하고, 높은 성능을 얻을 수 있는지에 대한 비교는 거의 이루어지지 않고 있다. 본 논문은 두 가지 대표적인 진화기법인 GA와 GP를 이용하여 모듈라 뱀형 로봇의 이동 제어를 수행하였다. 대상 로봇은 H/W로 구현이 가능한 실제 모듈로 구성되었고, Webots을 사용하여 시뮬레이션 실험을 수행하였으며, GA와 GP 기법에 의한 결과를 비교 분석하였다.

  • PDF

Behavior Learning and Evolution of Individual Robot for Cooperative Behavior of Swarm Robot System (군집 로봇의 협조 행동을 위한 로봇 개체의 행동학습과 진화)

  • Sim, Kwee-Bo;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.131-137
    • /
    • 2006
  • In swarm robot systems, each robot must behaves by itself according to the its states and environments, and if necessary, must cooperates with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, the new learning and evolution method based on reinforcement learning having delayed reward ability and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. Reinforcement learning having delayed reward is still useful even though when there is no immediate reward. And by distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning is adopted in this paper. we verify the effectiveness of the proposed method by applying it to cooperative search problem.