• Title/Summary/Keyword: 진폭모드

Search Result 110, Processing Time 0.081 seconds

Effects of Mean Flow and Nozzle Damping on Acoustic Tuning of a Resonator in a Rocket Combustor (로켓엔진 연소기에서 공명기의 음향 동조에 미치는 유동 및 노즐 감쇠 효과에 관한 연구)

  • Sohn, Chae-Hoon;Park, I-Sun;Kim, Seong-Ku
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.41-47
    • /
    • 2006
  • Effects of mean flow and nozzle damping on acoustic tuning of a gas-liquid scheme coaxial injector are investigated numerically adopting a linear acoustic analysis. The injector plays a role as a half-wave acoustic resonator for acoustic damping in a combustion chamber of a liquid rocket engine. As Mach number of mean flow in a chamber increases, the resonant frequency of the first tangential mode decreases slightly and the optimum injector tuning length varies negligibly. Nozzle damping affects neither the resonant frequency nor the optimum length. From these numerical results, effects of mean flow and nozzle damping on acoustic tuning of a resonator are negligible. As open area of the injectors increases, the acoustic amplitude decreases, but new injector-coupled modes appear.

Detection of Cracks in feeder Pipes of Pressurized Heavy Water Reactor Using an EMAT Torsional Guided Wave (EMAT의 유도초음파 비틀림 모드를 이용한 가압중수로 피더관의 균열 검출)

  • Cheong, Yong-Moo;Kim, Sang-Soo;Lee, Dong-Hoon;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.136-141
    • /
    • 2004
  • A torsional guided wave mode was applied to detect a crack in a pipe. An array of electromagnetic acoustic transduce. (EMAT that can generate and receive torsional guided ultrasound with the frequency of 200kHz was designed and fabricated for testing a pipe of 2.5 inch diameter Artificial notches with various depths were fabricated in a bent feeder pipe mock-up and the detectability was examined from the distance of 2m of the specimen. The axial notches with the depth of 5% of wall thickness were successfully detected by a torsional mode (T(0,1)) generated by the EMAT However, it was found that the depth of defects was not related to the signal amplitude.

Experimental Validation of Crack Growth Prognosis under Variable Amplitude Loads (변동진폭하중 하에서 균열성장 예측의 실험적 검증)

  • Leem, Sang-Hyuck;An, Dawn;Lim, Che-Kyu;Hwang, Woongki;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, crack growth in a center-cracked plate is predicted under mode I variable amplitude loading, and the result is validated by experiment. Huang's model is employed to describe crack growth with acceleration and retardation due to the variable loading effect. Experiment is conducted with Al6016-T6 plate, in which the load is applied, and crack length is measured periodically. Particle Filter algorithm, which is based on the Bayesian approach, is used to estimate model parameters from the experimental data, and predict the crack growth of the future in the probabilistic way. The prediction is validated by the run-to-failure results, from which it is observed that the method predicts well the unique behavior of crack retardation and the more data are used, the closer prediction we get to the actual run-to-failure data.

Resonant Characteristics in Rectangular Harbor with Narrow Entrance (1.Field Measurements and Data Analyses) (개구부가 좁은 직사각형 항만의 공진특성(1.현장관측과 자료 분석))

  • 정원무;박우선;서경덕;채장원;정신택
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.201-215
    • /
    • 1999
  • Field measurements were made for long- and short-period waves and current velocities at the harbor mouth using pressure-type wave gauges and a current meter, respectively, at the Gamcheon Harbor which has a rectangular shape with a narrow entrance. The measured pressure data were subjected to spectral analyses after removing tidal effects by applying trend removal and high-pass filtering. For the band averaging of the raw spectra, in order to obtain good resolution over the entire frequency, instead of a constant band width, variable band widths were used, which gradually increase as marching from the lowest frequency towards higher frequencies. The Helmholtz resonance mode at the Gamcheon Harbor shows the relative amplification ratio of 9.2 at the wave period of 31.7 minutes, which is quite large compared with those at the harbors located on the east coast of Korea. The second and the third resonance period was 10.3 and 5.4 minute, respectively. On the other hand, the analysis of every 24 hours data shows that during storms the spectral densities are very large compared to those during calm seas and also the second and third resonances are predominant.

  • PDF

Integrity evaluation of rock bolt grouting using ultrasonic transmission technique (초음파 투과법을 이용한 록볼트 그라우팅의 건전도 평가)

  • Han, Shin-In;Lee, Jong-Sub;Lee, Yong-Jun;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • As one of the main support systems, rock bolts play a crucial role in the reinforcement of tunnels. Numerical and experimental studies using a transmission method of ultrasonic guided waves are performed to evaluate the integrity of rock bolts encapsulated by grouting paste. Numerical simulations using "DISPERSE" are carried out for the selection of the optimal experimental setup, i.e. non-destructive testing (NDT) system of the rock bolt. Based on results of the numerical simulation, the calculated frequency range for NDT testing is between 20kHz and 70kHz with the first longitudinal L(1) mode. Laboratory transmission tests are performed by attaching the piezo electric sensor at the tip of the rock bolt before embedding. Both of analytical and experimental results show that the amplitude of signals as well as the wave velocity increases with increase in the defect ratio of grouting paste. The defect in grouting paste means that the space around the rock bolt is not fully filled with the grouting paste. Experimental results also show that the increase of the wave velocity is more sensitive to the defect ratio increase than that of the amplitude. This study demonstrates that the transmission technique of ultrasonic guided waves may be a valuable tool in the evaluation of the rock bolt integrity.

  • PDF

Response Characteristics of the PZT Transducers during Glass Capillary Breakage (유리모세관 파괴시 방출된 탄성파에 대한 PZT 변환기의 응답특성)

  • Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 1998
  • The response characteristics of the PZT transducers during glass capillary breakage were studied at the epicenter of the glass plate. The PZT transducers had been made by using EC-65 PZT ceramics(supplied by Edo co.) with a constant area and a various thickness. The theoretical displacement and velocity at the epicenter of glass plate with an air boundary condition were calculated by assuming the point load of 1N force strength and a rise time of 280 ns with a ramped functional dependence, and the 1st pulses of the PZT transducer may be considered as the vertical velocity incident on the electrode of the PZT ceramic. The responses of the PZT transducer may be depended on the thickness mode of the PZT ceramic below 0.33 in the ratio of the thickness to the diameter of PZT ceramic, but the reponse of the PZT transducer may be depended on the other modes of PZT transducer in the addition of the thickness mode of the PZT ceramic above 0.33. The full time of half maximum at the 1st pulse was nearly 280 ns without a variation of applied breakage load and the resonant frequency of the PZT transducer, and then may be considered as the rise time of a AE source. The maximum amplitude of the 1st pulse depended on the incident vertical velocity and capacitance of the PZT transducer. Therefore, the full time of half maximum and maximum amplitude of the 1st pulse may be considered as the rise time and strength of acoustic emission source respectively.

  • PDF

Correlation between Storm Waves and Far-Infra-Gravity Waves Observed in kkye Harbor (옥계항에서 관측된 폭풍파와 저중력파의 상호관계)

  • 정원무;채장원;박우선;이광수;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.209-229
    • /
    • 2001
  • Simultaneous field measurements of short-period and long-period waves were made at five stations inside or outside Okkye Harbor, which is located in the east coast of Korea. Based on the measured data, spacial and temporal variations of the long-period wave energy were examined. Three smoothing methods were examined for the spectral estimates: fixed interval averaging method, incremental interval averaging method, and moving averaging method. It was shown that a proper smoothing method should be chosen depending on the period of first resonant mode and the length of data being used. By comparing the results obtained using the long-term data with those obtained using two-day data, we showed that it is necessary to analyze the data of calm seas and storm seas separately. The Helmholtz resonant period in Okkye Harbor was found to be about 9.6 minutes with its relative amplification ratio of 9 to 10, and local amplifications were apparent at the periods of 1.2 to 1.3 minutes and 0.7 minute. During calm seas, both at the harbor entrance and inside the harbor the energy of the waves of 9 minutes or longer period was larger than the infra-gravity wave energy by more than 100 times. However, during storm seas the energy level was very high all over the period band, and local amplification was larger than that during calm seas by more than 100 times, especially inside the harbor, Finally it was shown that the energies of the Helmholtz resonant mode and the infra-gravity waves of 1 to 2 minutes are proportional to the storm wave height.

  • PDF

Stabilization and characterization of a 10 GHz harmonically mode-locked Er-doped fiber ring laser by suppression of relaxation oscillation (완화진동억압을 이용한 10 GHz 고조모드잠금된 고리형 어븀첨가 광섬유 레이저의 출력 안정화 및 특성 측정)

  • 장지웅;이유승;전영민;임동건
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.58-64
    • /
    • 2002
  • Using Mach-Zehnder type intensity modulator, we stabilized a 10 GHz harmonically mode-locked dispersion-compensated fiber ring laser using a feedback controlling system, and we measured its stability. The laser was stabilized for more than 16 hours by controlling the cavity length to suppress the relaxation oscillation frequency component which had caused the laser output instability. The ms timing jitter and ms amplitude noise were measured to be 260-524 fsec and 4~11.5%, respectively, and BER test measurement showed a value of 10$^{-13}$ .

Numerical Study on Aerodynamic Characteristics of Flapping-Airfoil in Low Reynolds Number Flows (저 레이놀즈수 유동에서 Flapping-Airfoil의 수치적 공력특성 연구)

  • Lee, Jung-Sang;Kim, Chong-Am;Rho, Oh-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.44-52
    • /
    • 2002
  • Aerodynamic characteristics of a flapping airfoil in low Reynolds number flows are numerically studied using the unsteady, incompressible Navier-Stokes flow solver with a two-equation turbulence model. For more efficient computation of unsteady flows over flapping airfoil, the flow solver is parallel-implemented by MPI programming method Unsteady computations are performed for low Reynolds number flows over a NACA four-digit series airfoils. Effects of pitching, plunging, and flapping motion with different reduced frequency, amplitude, thickness and camber on aerodynamic characteristics are investigated. Present computational results yield a better agreement in thrust at various reduced frequency with experimental data.

An Experimental Study on Effect of Half-Wave Resonator Position on Acoustic Damping in a Combustion Chamber (연소실내 공명기 장착 위치에 따른 음향갑쇠 효과에 관한 실험적 연구)

  • Sohn, Chae-Hoon;Kim, Chul-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Effect of radial position of half-wave resonator is investigated experimentally for acoustic damping in a combustion chamber by adopting acoustic cold test. Acoustic damping is quantified by damping factor. When resonator with optimal tuning length is installed, damping is enhanced as its radial location is away from the center of the faceplate. And, spatial profile of damping factor is similar to that of the amplitude of the acoustic mode to be damped. As the location is close to the center, acoustic damping is mitigated and independent of the resonator length. On the other hand, the resonator with non-optimal length dose not show any effects of its radial position. Acoustic-damping capacity can be evaluated as functions of resonator length and position.