• Title/Summary/Keyword: 진동 피로 해석

Search Result 130, Processing Time 0.033 seconds

Vibration Fatigue Analysis of Spot Welded Component considering Change of Stiffness due to Fatigue Damage (피로손상의 누적에 따른 강성변화를 고려한 점용접부의 진동피로해석)

  • Kang, Ki-Weon
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The purpose of this paper was to evaluate the fatigue life to apply the vibration fatigue analysis considering the stiffness change of the spot welding due to fatigue damage accumulation. For this, the mechanical and fatigue properties of base and spot welded standard specimens were obtained through the tensile and constant amplitude fatigue test. The transfer function of the spot-welded structure was obtained from the frequency response analysis and fatigue analyisis was performed under the condition of PSD=0.11. A vibration fatigue analysis that considered changes in the frequency response due to the fatigue damage that is, failure of some wleding point was conducted on spot-welded structure. The fatigue life of the spot-welded structure was determined by combining the transfer function, the S-N curve of the tensile-shear spot-welded joint and the input PSD.

울진 원자력 5&6호기 Motor Operated Valve의 Equalizing Bypass Pipe Line에 대한 피로수명예측

  • 이진구;황인현;이억섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.219-224
    • /
    • 2001
  • 본 연구는 울진 원자력발전소 5&6호기 Class 1680, Parallel Gate 16-inch, Motor Operated Valve (Valve ID No. SI-653 and 654)에 부착되는 Equalizing Bypass Pipe Line (EBPL)이 밸브 시스템에 발생시키는 진동하중에 의한 영향을 동적 피로안정성 관점에서 규명하기 위하여 수행된 것이다. Equalizing Bypass Line Part의 최종 설계된 형상을 Fig. 1에 나타내었다. 본 해석을 위하여 운용 중 발생되는 부착부의 잔류진동 레벨이 3축 방향 가속도로 측정되었다. 본 연구에서는 해당 시변 가속도 데이터를 바탕으로 정확한 시간-응력 이력을 얻기 위하여 시간영역에서 천이 진동해석 (Transient Vibration Analysis)을 수행하였으며, 이를 실제적인 피로해석에 활용하였다. 시간영역에서의 천이 진동해석 및 피로해석을 위해 상용유한요소 해석프로그램인 ANSYS (Version 5.6)를 활용하였다.(중략)

  • PDF

Fatigue Life Evaluation in Frequency Domain of aircraft Equipment Exposed to Random Vibration (무작위 진동에 노출된 항공기 탑재 장비의 주파수영역 피로수명 평가)

  • Jung, Hyun Su;Kim, Ki Seung;Kim, Jun Su;Lee, Seong Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.627-638
    • /
    • 2017
  • Expecting fatigue life of mounted radar in aircraft is very important when designing, because the mounted radar in aircraft is exposed to long-term external random vibration. Among the methods of predicting the fatigue life, Fatigue analysis method in frequency domain has continuously been proposed in this field. In this paper, four fatigue analysis methods in frequency domain, which are widely used, have been selected and compared with the results for Specimen fatigue test. As a result, Dirlik and Benascicutti-Tovo methods have been matched better with fatigue analysis in time domain than the method in frequency method through the comparison between the fatigue analysis method in time domain and the method in frequency domain by conducting the specimen fatigue test with strain gage. Based on the results of the specimen fatigue test, We have conducted fatigue analysis of mounted radar in aircraft with Dirlik and Benasciutti-Tovo methods in the finite element model, and confirmed that the required life was satisfying.

Vibration Fatigue Analysis for Multi-Point Spot-Welded SPCC Structure Considering Change of Dynamic Response (동적응답의 변화를 고려한 점용접부의 진동피로해석)

  • Kang, Ki-Weon;Chang, Il-Joo;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1193-1199
    • /
    • 2010
  • Spot welding is the primary method of joining sheet metals in the automotive industry. As automobiles are subjected to fatigue loading, some spot welds may fracture before the whole system has failed. This local fracture of spot welds may lead to change in the dynamic response and consequently affect fatigue behavior of an automobile. Therefore, this change in dynamic response should be taken into consideration to assess the fatigue life of structures subjected to spectrum loading, such as automobiles. In this study, vibration fatigue analysis was performed by taking into consideration the change in the dynamic response due to accumulated damage at spot-welded parts. Fatigue tests were carried out on tensile-shear spot-welded specimens under constant amplitude loading condition. And the fatigue life of spot welds under spectrum loading was predicted using vibration fatigue analysis method based on finite element analysis.

원자력발전소 주증기 차단밸브스템 손상의 피로해석

  • 정대율;이우방;최원필
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.359-364
    • /
    • 1996
  • '93.4월에 고리원자력 4호기 운전중(원자로 출력 100%, 발전기 출력 975MWe) 주증기 차단밸브 (MSIV)의 닫힘으로 인해 발전소가 정지되었다. 밸브분해 점검결과 밸브스템이 Back Seat Ring 조립부위 Notch 부위에서 Steam Flow와 평행한 방향으로 절단되어, 밸브스템의 손상원인을 규명하기 위한 본 연구에서는 피로해석절차도에 따라 S-N 곡선에 근거하여 피로해석을 수행하였다. 피로해석결과 밸브스템의 초기균열 생성원인은 Stem Notch 부위의 제작결함과 발전소 정지시 밸브를 급속히 닫을 때 작용하는 충격하중등에 의해 발생된 것으로 추정되며 인장평균응력과 관내 유체의 진동하중의 변동응력이 조합하여 피로균열을 가속시켜 파손을 일으킨 것으로 사교된다.

  • PDF

Fatigue Life Optimization of Spot Welding Nuggets Considering Vibration Mode of Vehicle Subframe (서브프레임의 진동모드를 고려한 점용접 너깃의 피로수명 최적설계)

  • Lee, Sang-Beom;Lee, Hyuk-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.646-652
    • /
    • 2009
  • In this paper, welding pitch optimization technique of vehicle subframe is presented considering the fatigue life of spot welding nuggets. Fatigue life of spot welding nuggets is estimated by using the frequency-domain fatigue analysis technique. The input data, which are used in the fatigue analysis, are obtained by performing the dynamic analysis of vehicle model passing through the Belgian road profile and also the modal frequency response analysis of finite element model of vehicle subframe. According to the fatigue life result obtained from the frequency-domain fatigue analysis, the design points to optimize the weld pitch distance are determined. For obtaining the welding pitch combination to maximize the fatigue life of the spot welding nuggets, 4-factor, 3-level orthogonal array experimental design is used. This study shows that the optimized subframe improves the fatigue life of welding nugget with minimum fatigue life about 65.8 % as compared with the baseline design.

Evaluation of Vibration Fatigue Life of Shipboard Equipment Made of Aluminum Alloy A356 (주조 알루미늄합금 A356을 사용한 해상구조물의 진동피로수명평가)

  • Cho, Ki-Dae;Kim, Jie-Eok;Yang, Sung-Chul;Jung, Hwa-Young;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1257-1263
    • /
    • 2010
  • The naval structure exposes to environmental vibration of shafted propeller propulsion and engine vibration. The shipboard equipments are developed compliance to MIL-STD-167-1A. For this purpose, vibration fatigue life of shipboard equipment for long lives should be estimate via an analytical approach and vibration test. In this paper, High cycle fatigue strength of cast aluminum alloy A356 using shipboard equipment was evaluated by 14 S-N method. The stress applied on the structure is evaluated by an analytical method(frequency response analysis with sinusoidal input and a fatigue evaluation) to simulate a MIL-STD-167-1A test. The frequency with the maximum equivalent stress is shown by Max. test frequency and the vibration fatigue life of shipboard equipment was estimated by Miner's rule.

Vibration Fatigue Analysis of Automotive Fuel Tank Using Transfer Function Method (Transfer Function Method를 이용한 자동차 연료탱크의 진동 피로 해석에 대한 연구)

  • Ahn, Sang Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.27-33
    • /
    • 2020
  • In this paper, the process of predicting efficient durability performance for vibration durability test of automobile parts using vibration test load on automobile fuel tank is presented. First of all, the common standard load that can be applied to the initial development process of the automobile was used for the fuel tank and the vulnerability of the fuel tank to the vibration fatigue load was identified through frequency response analysis. In addition, the vulnerability of the fuel tank was re-enacted through vibration durability test results, and the scale factor was applied to the standard load. In order to predict the vibration durability performance required for detailed design, vibration fatigue analysis was performed on the developed vehicle with the frequency of vibration severity equivalent to the durability test, and the vulnerability and life span of the fuel tank were identified through the process of applying weights to these selected standard loads, thereby reducing the test time of the development vehicle.

Study on Vibration Fatigue Analysis of Automotive Battery Supporter (자동차 배터리 지지 구조의 진동 피로 해석에 대한 연구)

  • Ah, Sang Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.22-27
    • /
    • 2019
  • In this paper, the vibration load and analysis results for automotive battery supporter were performed to provide efficient vibration tolerance performance prediction methods for single-product vibration tolerance testing, and the major influencing factors and considerations for setting up single-unit vibration tolerance tests were reviewed. A common applicable standard load was applied to efficiently predict the performance of single-unit vibrations through the frequency response analysis technique. The results similar to test results can be predicted by checking vulnerable parts of the vehicle components for vibration loads and applying scale factor to standard loads. In addition, it was confirmed that the test conditions with a frequency generating the same durability severity as the endurance test are needed for accurate prediction of the durability of the single-unit vibration tolerance test conditions, and the acceleration and frequency with the conditions that there is no significant nonlinear phenomena in the vibration system are established during the single-unit vibration tolerance test conditions.

The CFD Analysis for the Fatigue Life Evaluation of HRSG Structure (배열회수 보일러 구조물의 피로수명 평가를 위한 유동해석)

  • Kim, Jinbeom;Kim, Chulho
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.7-17
    • /
    • 2020
  • Heat recovery steam generator(HRSG) generate steam using the high-temperature exhaust energy of gas turbines. Structures of HRSG are damaged by flow induced vibration of flue gas in some cases. In order to evaluate fatigue life to predict damage to a structure, a vibration analysis caused from flue gas should be used to derive the Power Spectral Density(PSD). However, it is very difficult to experimentally derive the vibrations generated by the exhaust gas form of gas turbines, which is very fast and complex. It was able to establish a way to identify vibration characteristics depending on the location of the structure by using high computing resources, large eddy simulation (LES). Random vibration analysis through these vibration characteristics(PSD) can evaluate the fatigue life of a structure.