• Title/Summary/Keyword: 진동 평가

Search Result 2,763, Processing Time 0.033 seconds

Evaluation of the Influence of Blast Vibration on Machine Tool Accuracy (발파진동으로 인한 공작기계 가공정도의 영향 평가)

  • Lee, JinKab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4790-4795
    • /
    • 2014
  • The machine tool is used widely to manufacture and trial manufactured goods in many machinery industries. Blast-induced ground vibration may have an environmental impact, such as damage to the adjacent structures and facilities. This study examined the influence of blast vibration on the accuracy of machine tools. The blast vibration and vibration of machine tools was measured to evaluate the influence of blast vibration on machine tools. Based on the evaluation of the vibration limit of machine tools, the vibration criteria for machine tools in this study were SLIGHTLY ROUGH~ROUGH. By repeated blast vibration, machine tools are more likely show reduced accuracy.

전신 진동 측정기술과 인체 영향 평가방법

  • 정완섭;김용태
    • Journal of KSNVE
    • /
    • v.12 no.2
    • /
    • pp.103-112
    • /
    • 2002
  • 인간이 도구를 사용한 이래 진동과 충격의 인체 피폭은 점진적으로 증가되었으며, 산업 혁명의 부산물인 동력기관을 이용하는 육-해-공 운송수단의 20세기 발전은 인체진동 피폭의 급격한 증대를 수반하였다. 자동차를 포함한 운송수단은 21세기 우리생활의 필수품으로 확고한 자리를 잡을 것이 확실시된다. 우리 주변의 수많은 진동 발생원들과 이에 직간접적으로 노출되어있는 현대인의 생활은 진동에 대한 새로운 이해와 접근방법의 개척을 요구하여 새로운 공학분야를 잉태하였다.(중략)

Vortex shedding behind the oscillating circular cylinder (진동하는 원형실린더 주위 유동의 와흘림에 관한 연구)

  • Kim, Dae-Hyeong;Kim, Gi-Ha;Lee, Chang-Hun;Choe, Jeong-Il
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.321-326
    • /
    • 2013
  • 본 연구에서는 원형실린더의 강제 수평 및 수직진동에 따른 와흘림을 관찰하였다. EDISON_CFD의 가상경계법을 이용하여 원형실린더 주위 유동현상을 수치 모사하였다. 원형실린더의 강제 진동 특성에 따른 와흘림 진동수, 공력계수 등의 영향을 분석하였다. 특히, 진동방향에 따른 와흘림의 영향을 분석하여, 원형실린더의 강제 진동에 따른 유동의 선형성을 평가하였다.

  • PDF

Modal Analysis of a Large Truss for Structural Integrity (건전성 평가를 위한 대형 트러스 구조물의 모드분석)

  • Park, Soo-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Dynamic characteristics of a structure, i.e., natural frequency and mode shape, have been widely using as an input data in the area of structural integrity or health monitoring which combined with the damage evaluation and structural system identification techniques. It is very difficult, however, to get those information by the conventional modal analysis method from large structures, such as the offshore structure or the long-span bridge, since the source of vibration is not available. In this paper, a method to obtain the frequencies and the mode shapes of a large span truss structure using only acceleration responses is studied. The calculation procedures to obtain acceleration responses and frequency response functions are provided utilizing a numerical model of the truss, and the process to extract natural frequencies and mode shapes from the modal analysis is cleary explained. The extracted mode shapes by proposed method are compared with those from eigenvalue analysis for the estimation of accuracy. The validity of the mode shapes is also demonstrated using an existing damage detection technique for the truss structure by simulated damage cases.

A New Methodology for the Assessment of Liquefaction Potential Based on the Dynamic Characteristics of Soils (I) : A Proposal of Methodology (지반의 동적특성에 기초한 액상화 평가법(I) : 이론제안)

  • 최재순;홍우석;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.91-99
    • /
    • 2002
  • In this study, a new methodology for the assessment of liquefaction potential is proposed. Since there is no data on the liquefaction damage in Korea, the dynamic behavior of fully saturated soils is characterized through laboratory dynamic tests. There are two experimental parameters related to the soil liquefaction resistance characteristics : the one is the index of disturbance determined by $G/G_{max}$ curve and the other is a plastic shear strain trajectory evaluated from stress-strain curve. The proposed methodology takes advantage of the site response analysis based on real earthquake records to determine the driving effect of earthquake. In the evaluation of liquefaction resistance characteristics, it is verified experimentally that the magnitude of cyclic shear stress has no influence on the critical value of plastic shear strain trajectory at which the initial liquefaction occurs. Cyclic triaxial tests under the conditions of various cyclic stress ratios and torsional shear tests are carried out far the purpose of verification. Through this study, the critical value at the initial liquefaction is found unique regardless of the cyclic stress ratio. It is also f3und that liquefaction resistance curve drawn with disturbance and plastic shear strain trajectory can simulate the behavior of fully saturated soils under dynamic loads.