진동하는 원형실린더 주위 유동의 와흘림에 관한 연구

Vortex shedding behind the oscillating circular cylinder

김대형^{1*}, 김기하², 이창훈³, 최정일³

연세대학교 기계공학과¹, 연세대학교 천문우주학과², 연세대학교 계산과학공학과³

초 록

본 연구에서는 원형실린더의 강제 수평 및 수직진동에 따른 와흘림을 관찰하였다. EDISON_CFD의 가 상경계법을 이용하여 원형실린더 주위 유동현상을 수치 모사하였다. 원형실린더의 강제 진동 특성에 따 른 와흘림 진동수, 공력계수 등의 영향을 분석하였다. 특히, 진동방향에 따른 와흘림의 영향을 분석하여, 원형실린더의 강제 진동에 따른 유동의 선형성을 평가하였다.

Key Words : 원형실린더 (Circular Cylinder), 강제 진동 (Forced Oscillation), 와흘림 (Vortex Shedding)

1. 서 론

실린더 형태의 구조물은 인공물뿐만 아니라 많은 자연물 중에서도 관찰이 된다. 이러한 연유로 실린더 주변(특히 후류)에 대한 많은 연구들이 진행 되었어왔다. 또한 실린더 유동해석은 유동제어의 근본적인 지식으로 관련연구의 적용분야는 셀 수 없을 정도로 많다. 특히 실린더 후류의 경우 특정 레이놀즈 수 에서 와흘림 현상이 나타난다. 정지된 실린더의 와흘림 현상에 관하여는 Williamson et al.⁽¹⁾에 의하여 연 구된바 있다. 수직으로 진동하는 실린더의 와흘림 특성은 Pham et al⁽²⁾에 의하여 연구 된 바가 있다. 이 연구에서는 진폭을 실린더 지름의 0.2배로 가진 하였을 때의 lock-on현상의 발생에 대하여 논의가 되었 다. 수평으로 진동하는 경우는 Cetiner & Rockwell⁽³⁾에 의하여 연구된 바 있다. 본 연구는 이에 더 나아 가 진동 각도에 따른 유동변화와 공력계수의 변화 그리고 와흘림의 스트롤 수(*St* = *fD*/*U*)변화에 관하 여 연구를 하였다. 여기서 *f*는 와흘림의 진동수, *D*는 실린더의 지름, *U*는 유동의 속도를 나타낸다. 연 구에 사용된 수치해석 도구로는 가상경계법을 이용한 EDISON_CFD의 YUIBM2 Solver를 사용하였다. YUIBM2 Solver에 사용된 가상 경계법을 이용한 실린더 유동에 관한 연구는 Park et al.⁽⁴⁾에 의해서 진행 된바 있다. 본 연구에서는 진동이 없는 경우 레이놀즈 수(*Re* = *UD*/*v*) 200에서 와흘림 진동 위상에 따 른 유동장을 분석하였다. lock-on현상이 발생하는 수직 진동(90°)의 유동을 현상을 관찰하였다. 수직과 수평(0°)을 제외한 임의의 각도를 두 진동의 중첩으로 가정하여 중첩 진동 결과 값이 수직진동과 수평 진동의 결과 값으로부터 계산한 선형적 예측과의 관계를 알아보았다.

2. 수치해석 대상 및 방법

2.1 수치해석 대상

본 연구에서는 실린더의 지름을 D로 하여 모든 길이 단위를 무차원화 하였다. 유동 입구 쪽의 충분한 유동 발달을 위해 10D의 영역을 설정하였고 위와 아래 원거리는 15D의 길이로 설정하였다. 후류의 완 전히 발달한 형태를 관찰하기 위하여 출구 쪽은 20D의 비교적 큰 길이로 계산영역 결정하였다. Fig 1. 은 본 연구에 사용된 계산영역 및 각 방향으로의 길이를 나타내고 있다. 본 연구에서는 가상 경계법을 이용하여 진동 시 실린더 위치 변화에 따른 격자 재생성의 불편함을 해소하였다. Fig. 1에서 실린더 위 치와 크기를 나타내었지만 실제 계산영역에서 실린더의 형태는 나타나지 않는다.

2.2 수치해석 방법

격자 분해능을 비교하기 위해서 실린더를 중심으로 가로, 세로 지름크기($D \times D$)의 사각형을 형성하여 격자를 3가지 경우로 만들었다. 각 격자계의 중심부의 점의 개수를 각각 20×20 , 30×30 . 40×40 로 균일하게 배치하였다. 전체 계산 영역 점의 개수는 중앙 사각형의 점의 개수에 비례하여 160×120 , 120×90 . 80×60 으로 배치하였으며 EDISON 전처리기의 격자 배치 비례변수를 1.03으로 설정하여 실 린더 주위로 격자를 집중 시켰다. 왼쪽 유동입구와 오른쪽 유동 출구를 아음속 입구/출구 경계조건으로 설정하였고, 위와 아래는 원거리 경계조건을 적용하여 연구를 진행하였다.

3. 결과 분석

3.1 정지된 실린더 주위의 유동

Table 1.은 실린더를 고정한 상태에서 공력계수(항력계수 C_D , 양력계수 C_L)와 스트롤 수를 선행 연구들 과 비교한 표이다. 와흘림이 발생하지 않는 레이놀즈 수 20, 40의 영역에서는 C_D 와 박리각도, 박리 기 포의 크기를 비교하였다.

Table 1.	정지된	실린더	주위	유동의	레이놀즈	수에 따른	· 공력계수,	스트롤	수 비교;	160×120	격자계
----------	-----	-----	----	-----	------	-------	---------	-----	-------	------------------	-----

		Re 20		Re 40			
	L/D	θ	C_D	L/D	θ	C_D	
Dennis and Chang ^[5]	0.94	43.7	2.05	2.35	53.8	1.52	
Calhoun [6]	0.91	45.5	2.19	2.18	54.2	1.62	
Russell and Wang [7]	0.94	43.3	2.13	2.29	53.1	1.60	
Choi et al. [8]	0.90	40.8	2.02	2.24	45.1	1.49	
Present	0.77	37.32	2.19	1.51	43.11	1.64	
	Re 100			Re 200			
	C_D	C_L	St	C_D	C_L	St	
Kim et al. [9]	1.33	± 0.32	0.165	-	-	-	
Calhoun [6]	1.33 ± 0.014	± 0.300	0.175	1.17 ± 0.058	± 0.67	0.202	
Russell and Wang [7]	1.38 ± 0.007	± 0.322	0.169	1.29 ± 0.022	± 0.50	0.194	
Lui et al. [10]	1.35 ± 0.012	± 0.339	0.164	1.31 ± 0.049	± 0.69	0.192	
Choi et al. [8]	1.34 ± 0.011	± 0.315	0.164	1.36 ± 0.048	± 0.64	0.191	
Present	1.34 ± 0.092	± 0.345	0.159	1.40 ± 0.047	± 0.73	0.192	

본 연구의 결과 값은 선행 연구들의 결과 값에 비교하여 큰 차이를 보이지 않았음을 확인 할 수 있었 다. 격자 분해능의 유효성을 검증하기 위하여 크기가 다른 3개의 격자계(160×120, 120×90, 80×60) 의 공력계수 및 스트롤 수를 비교하였다. 레이놀즈 수 60, 100, 150 경우의 값을 **Fig 2.**에 나타내었다.

제 2회 첨단 사이언스·교육 허브 개발(EDISON) 경진대회

Williamson⁽¹¹⁾의 연구에 따르면 레이놀즈 수의 범위 $50 \le Re \le 160$ 에서 스트롤 수는 식 (1)을 만족한다. $St = -\frac{3.3265}{Re} + 0.1816 + 1.600 \times 10^{-4} Re$ (1)

Fig 2. (a)는 본 연구의 결과 격자의 크기가 커질수록 스트롤 수가 Williamson⁽¹¹⁾의 제시한 값과 근사해 지는 것을 보여준다. Fig 2. (b)는 본 연구결과의 C_{Da} 값이 격자의 크기가 커질수록 Panton⁽¹²⁾의 연구 결과와 근사 하는 것을 보여준다. 위의 두 가지 유효성 검사를 통해서 본 연구에서 사용한 160×120 격 자계의 신뢰성을 확인하였다.

레이놀즈 수를 200으로 계산 할 경우 스트롤 수는 0.192로 나타났다. 일반적인 와흘림의 주기적 유동 특성을 알아보기 위하여 유동장을 관찰하여 보았다. 한 주기의 자료를 분석한 결과 정확히 반주기의 반 대칭(anti-symmetry)를 형성하는 것을 확인 하였다. 이러한 이유로 반주기의 유동장을 **Fig 3**.에 나타 내 었다.

Fig. 3. 진동이 없을 경우 레이놀즈 수 200에서 실린더 주위 유동의 반주기 와도 변화

그림 **a**에서 아래쪽의 와류가 박리됨에 따라 아래쪽 압력이 회복되어 와류가 남아있는 위쪽 보다 상대적 으로 고압이 된다. 이로 인해 *C*_L값이 최대 점에 도달한다. 그림 **b** → **c** → **d** 의 순서대로 위쪽 와류 가 성장함에 따라 크기를 유지 하지 못하게 되어 박리를 시작하며 그림 **e**에서 완전히 박리된다. 이 상 태는 **a**의 경우와 정량적으로 반 대칭을 이루기 때문에 이때의 *C*_L값은 최소가 된다. 3.2 진동하는 실린더 주위의 유동

본 연구에서는 가진 진동수의 범위를 $0.8 \le f_s \le 1.2$ $(f_s = f/f_0)$ 로 정하여 $\Delta f_s = 0.05$ 간격으로 계산 을 진행 하였다. 여기서 f는 가진 진동수를 f_0는 진동이 없을시 나타나는 실린더의 고유 진동수이다. 실린더의 강제 진동은 식 (2)의 형태로 가진 하였다. $\mathbf{x}(t)$ 는 시간에 따른 실린더의 중심 위치이고 \mathbf{x}_0 는 초기의 진동기준점이다. A는 진폭, $\hat{e_x}$, $\hat{e_y}$ 는 각각 x, y 방향 단위 벡터를 $\hat{e_{\theta}}$ 는 각도 θ 에 따른 진동방 향의 단위 벡터를 나타낸다.

 $\vec{x}(t) = \vec{x}_{o} + Asin(2\pi ft)\hat{e}_{\theta}, \quad \hat{e}_{\theta} = \cos\theta\hat{e}_{x} + \sin\theta\hat{e}_{y}$ (2) 수직진동에서는 Lock-on 현상이 관찰 되었다. Lock-on 현상은 가진 진동수가 고유 진동수 근처일 경우 와흘림의 진동이 단일 진동수를 가지며 크기는 가진 진동수와 비례하는 현상을 말한다. Pham et al.⁽²⁾에 따르면 A/D = 0.2(A : 진폭의 크기)일 경우 Lock-on 현상은 $0.8 \le f_{s} \le 1.05$ 에서 나타나고 1.1부터 사 라지게 된다. 이러한 현상은 Pham et al.의 결과와 일치하였으며 Fig 4. 에 나타내었다.

Fig. 4. 가진 진동수에 따른 Lock-on 현상의 유무

Lock-on 현상이 발생하는 경우 단일 진동수를 가지므로 정지된 실린더의 유동과 형태적으로 크게 다르 지 않지만 Lock-on이 발생하지 않을 경우 위상에 따른 유동현상이 상당히 다르게 나타난다. 이를 위하여 $f_s = 1.1의 경우 2차 진동수를 기준으로 한 주기의 C_L 극댓값의 유동을 관찰하였다. 실린더 내부의 +$ 표시는 진동 기준점을 표시한 것이다.

Fig. 5. Non-lock-on(f_s=1.1)에서 2차 진동의 1주기 동안 C_L 극대 값에서의 유동

제 2회 첨단 사이언스·교육 허브 개발(EDISON) 경진대회

C_L이 극대 값일 때의 유동이기 때문에 모든 유동장에서 공통적으로 아래쪽 와류가 박리되는 현상을 보 인다. 하지만 고정된 경우와는 다르게 위쪽 와류와의 상관관계에 따라서 C_L의 값이 다르게 나타남을 알 수 있다. 극단적으로 **a**의 경우 위쪽 와류도 과도하게 성장하여 함께 박리 되므로 C_L값이 작은데 비해 **e** 의 경우 아래쪽 와류는 완전 박리 되지만 위쪽의 와류는 강하게 형성되어 C_L값이 커지는 것을 볼 수 있다. 수직진동의 연구와는 다르게 수평 진동에서는 Lock-on 현상이 나타나지는 않았다. 다른 진동 패턴 과 관련된 스트롤 수 분석은 3.3. 임의 진동 에서 진행하기로 한다.

3.3 임의 진동

본 연구에서는 임의진동의 각도를 45°로 하여 A/D=0.2로 가진 하였다. 실험 결과는 아래 **Fig 6. 7.** 과 같다.

Fig. 6. 임의 진동의 진동수에 따른 스트롤 수 변화와 수직, 수평 진동과의 비교

Fig 6. 을 통해 수직 진동과 임의 진동의 경우 1차 진동의 스트롤 수는 가진 진동수와 일치함을 알 수 있다. 하지만 수평 진동의 경우 Lock-on 현상의 빠른 손실로 인해 1차 진동의 일부가 2차 진동의 형태 를 나타냄을 관찰 할 수 있었다. 이런 부분을 고려한다면 전반적으로 임의 진동의 스트롤 수는 수직, 수 평 진동과의 선형적 중첩관계를 유지한다고 볼 수 있다.

Fig 7. 에 표시한 Estimated 값은 공력계수 선형적 중첩효과가 발생할 경우 임의의 각도에 대한 예측을
식 각각 (3), (4)를 이용하여 구한 값 이다. $C_D(\theta)_{estimated} = \sqrt{[C_{D,0}\cos\theta]^2 + [C_{D,90}\sin\theta]^2}$, $C_L(\theta)_{estimated} = \sqrt{[C_{L,0}\cos\theta]^2 + [C_{L,90}\sin\theta]^2}$ (3)Fig 7. (a) 에서 알 수 있듯이 진동이 없는 경우에 비하여 수평진동의 경우 C_D 값이 낮게 나타났으며 수
직진동의 경우 높은 진동수 영역에서 더 커지는 것을 확인 하였다. 또한 C_D 값은 진동수가 낮은 범위

 $(f_s \leq 1)$ 에서 중첩현상을 나타냈다. Fig 7. (b) 에서는 C_L 값은 수평진동의 경우 정지된 경우 보다 높게 나타나고 수직진동의 경우 높은 진동수 영역에서 크게 나타났다. 하지만 C_L 값은 $C_L(\theta)_{estimated}$ 크게 차이가 나는 것으로 보아 중첩효과는 나타나지 않는 것으로 보인다.

4. 결론

본 연구에서는 EDISON_CFD를 활용하여 강제진동 하는 원형실린더 주위의 2차원 난류유동을 해석하였 다. 해석결과의 신뢰성을 알아보기 위해 정지된 실린더 유동의 공력계수 및 스트롤 수를 선행연구와 비 교했다. 또한 격자분해능에 따른 공력계수 및 스트롤 수를 확인하여 신뢰성을 검증하였다. 레이놀즈 수 가 200일 경우 정지된 실린더의 유동을 관찰하여 C_L 값과 그에 해당하는 순간 유동장의 특징을 알아보 았다. 와흘림 와류의 주기적인 박리에 따라서 압력 변화가 발생하고 C_L 값이 변동되는 것을 확인하였다. 수직 진동에서는 A/D=0.2일 경우 $f_s ≤ 1.05$ 범위의 Lock-on 현상을 관찰하였다. 또한 Lock-on 현상이 유지되지 않을 경우 나타나는 특징적인 유동의 C_L 값과 그에 해당하는 순간 유동장의 관계성을 알아보 았다. 정지된 경우와 마찬가지로 와류의 박리와 C_L 값의 관계성 확인하였다. 임의의 진동의 경우 수평, 수직 진동의 스트롤 수 변화를 바탕으로 예상되는 선형적 중첩 형태를 나타내는 것으로 확인되었다. 마 찬가지로 C_D 값의 경우에도 예상되는 값과 진동수가 낮은 범위($f_s ≤ 1$)에서 선형적 중첩이 발생함을 확 인하였다. 하지만 C_L 값은 전 진동수 영역에 걸쳐 예상과는 크게 차이가 있어 선형적 중첩효과는 없는 것으로 확인되었다.

참고문헌

- C. H. K. Williamson, R. Govardhan, 2004, "Vortex-Induced Vibrations", Annu. Rev. Fluid Mech. 2004. 36, pp. 413-455.
- (2) Anh-Hung Pham et al., 2010, "Laminar Flow Past an Oscillating Circular Cylinder in Cross Flow", J. Marine Science and Technology, Vol.18, pp.361-368.
- (3) O. Cetiner, D. Rockwell, 2001, "Streamwise Oscillations of a Cylinder in a Steady Current. Part 1. Locked-on States of Vortex Formation and Loading", J. Fluid Mech., Vol. 427, pp. 1–28.
- (4) Hyun Wook Park et al., 2012, "벽 근접 효과에 의한 물체의 항력 양력 변화", J. Comput. Fluids Eng. Vol. 17 pp. 68-74.
- (5) S.C.R. Dennis, Gau-Zu. Chang, 1970, "Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100", J. Fluid Mechanics Vol. 42 pp. 471-489.
- (6) D. Calhoun, 2002, "A Cartesian grid method for solving the two-dimensional stream function-vorticity equations in irregular region", J. Computational Physics Vol. 176 pp. 231– 275.
- (7) D. Russell, Z.J. Wang, 2003, "A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow", J. Computational Physics Vol. 191 pp. 177-205.
- (8) Jung-Il Choi et al., 2007, "An immersed boundary method for complex incompressible flows", J. Computational Physics, pp. 757-784.
- (9) J. Kim, D. Kim, H. Choi, 2001, "An immersed boundary finite volume method for simulations of flow in complex geometries", J. Computational Physics Vol. 171 pp. 132–150.
- (10) C. Liu, X. Sheng, C. H. Sung, 1998, "Preconditioned multigrid methods for unsteady incompressible flows", J. Computational Physics Vol. 139 pp. 35-57.
- (11) C. H. K. Williamson, 1989, "Oblique and Parallel Modes of Vortex Shedding in the Wake of Circular Cylinder at Low Reynolds Numbers", J. Fluid Mech 206, 579.
- (12) Panton, R. L., 2005, "Incompressible Flow", WILEY, Canada.
- (13) Seung-Jin Baek, Hyoung Jin Sung, 1998, "Numerical Simulation of the Flow Behind a Rotary Oscillating Circular Cylinder", Physics of Fluids, Vol. 10-4.