• Title/Summary/Keyword: 진동 규명

Search Result 575, Processing Time 0.023 seconds

Experimental Study of the In-Water Radiation Impedance of the Finite Baffle Cylinder Radiator (유한 배플 원통 진동체의 수중 방사 임피던스에 대한 실험적 연구)

  • Kim, Won-Ho;Yoon, Jong-Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.23-29
    • /
    • 1994
  • In this paper, the measured in-water radiation impedance of cylindrical piezoelectric radiator with finite baffle is compared to the existing theoretical result of that with infinite baffle and the effect of baffle on the radiation impedance is examined. Comparision between measurement and theoretical result of radiation impedance shows that the measured radiation impedance tends to be that of the infinite baffle as the baffle length increases. Another finding of the comparision in that the effect of baffle is more dominant in radiation reactance than in radiation resistance. Therefore, for the use of theoretical radiation impedance of infinite baffle on the design of acoustic transducer, the impedance compensation to the baffle length should conducted.

  • PDF

A Study on Semi-active Vibration Isolation Table using a Nonlinear Analysis of the MR Damper (MR 댐퍼의 비선형해석을 이용한 반능동형 제진대에 관한 연구)

  • Kim, DoYoung;Chun, ChongKeun;Kwon, YoungChul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.861-867
    • /
    • 2014
  • In this study, a semi-active isolator was constructed from applying a MR damper that used the MR fluid to an isolator. The parameter identification was also performed to determine the characteristics of this semi-active isolator during which the least squares method and the auxiliary variable method were applied to produce a value closest to the true value. In addition, the MR damper's nonlinear damping force was closely analyzed to greatly reduce the range of error. Based on this analysis, it was discovered that the parameter tended to increase with more electric current. Such analysis of the dynamic properties of semi-active isolator proved that constructing an isolator that provides a more stable operation could be achieved.

Study on Be-Dopplerization Technique for Rotating Source Localization (마이크로폰 어레이를 이용한 회전하는 소음원 가시화에 관한 연구)

  • Park, Sung;Lee, Ja-Hyung;Choi, Jong-Soo;Kim, Jai-Moo;Rhee, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.200-204
    • /
    • 2005
  • The use of beamforming method and de-Dopplerization technique was applied in studying the rotating sound sources. Acoustic analysis of a moving sound source required that the measured sound signals be do-Dopplerized and restored as of the original emission signals. Two main issues of the signal reconstruction in time domain are addressed herein: First, to remove Doppler effect from the measured data and to restore the original emission data of the moving source. The difference of the time domain beamforming from the frequency domain beamforming was mentioned. Also, the time domain beamforming method is deployed in the test and the comparisons were made to the frequency domain results. The time domain signal reconstruction was numerically simulated prior to the application. To validate the de-Dopplerization Performance, the rotating Point sources were examined and localized by the use of a phased array of microphone. The application of prop-rotor was conducted in a hovering condition. The results of reconstructing time signals of rotating sources and its locations were shown in the power distribution maps. In the prop-rotor measurements, the acoustic source locations were successfully verified in varying positions for different frequencies of interest.

  • PDF

Study for Visualization of Rotating Sound Source Using Microphone Array (마이크로폰 어레이를 이용한 회전하는 소음원 가시화에 관한 연구)

  • Rhee, Wook;Park, Sung;Lee, Ja-Hyung;Kim, Jai-Moo;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.565-573
    • /
    • 2006
  • Acoustic analysis of a moving sound source required that the measured sound signals be do-Dopplerized and restored as of the original emission signals. The purpose of this research is development of beamforming technique can be applied to the rotor noise source identification. For the do-Dopplerization and reconstruction of emitted sound wave, Forward Propagation Method is applied to the time domain beamforming technique. And validation test were performed using rotating sound source constructed by bended pipe and horn driver. In the validation test using sinusoidal sound wave, sufficient performance of signal processing can be seen, and the effect of measuring duration for accuracy was compared. In the prop-rotor measurements, the acoustic source locations were successfully verified in varying positions for different frequencies and collective pitch angle, in hover condition.

Identification of the Interior Noise Generated by SUV Axle and Modification of the Structural on Axle System for Noise Reduction (SUV용 액슬의 소음원 규명 및 소음 저감을 위한 액슬의 구조변경에 관한 연구)

  • Lee, Ju-Young;Jo, Yoon-Kyeong;Kim, Jong-Youn;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.582-592
    • /
    • 2006
  • This paper presents experimental and analytic methods to reduce interior noise generated by car axle. The test vehicle has a whine noise problem at passenger seats. In order to identify transfer path of interior axle noise, the vibration path analysis, the modal analysis and running modal analysis are systematically employed. By using these various methods, it has been founded that the interior noise generated by car axle was air borne noise. To reduce and predict axle noise, various structural modifications are performed by using FEM and BEM techniques, respectively. Through the modification of the axle structure, the air borne noise of the axle was reduced 3$\sim$4 dBA level.

Identifications and Reduction Methods of Aerodynamic Noise Sources in High Speed Rotating Optical Disk Drive (고속으로 회전하는 광디스크 드라이브의 공력 소음원 규명 및 소음저감방법)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.477-483
    • /
    • 2007
  • Major noise source in high speed rotating optical disk drives (CD and DVD-ROM) arises due to the high-speed airflow produced from the upper and lower surfaces on the rotating disk. The present paper deals with the experimental approach how to identify the noise source based on the fundamental principles of aeroacoustics and to propose a reduction method of the noise source. The CD-ROM device is composed of disk, window tray, motors at the bottom place and electronic circuit plate also located below the window plate. The window is cut in the tray to read the disk information using the optical device located below the tray and moving linearly from the center of the disk through the end of the disk. All components are possible noise generators. Experimental studies were carried out in the anechoic room with various design modifications, such as tray geometry, window size and hole location on tray, to identify the major aerodynamic noise source and significant reductions of the aerodynamic noise were obtained.

A Study on the Identification & Improvement of Dynamic Characteristics of Compressor Shell by Substructure Synthesis Method (부분구조합성법을 이용한 컴프레서 쉘의 동특성 규명 및 개선에 관한 연구)

  • Kim, Dong-Kyu;Kim, Jong-Bae;Go, Sang-Chul;Han, Kwang-Hee;Oh, Jae-Eung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.99-106
    • /
    • 1996
  • The noise of a compressor is a major contributor to overall noise radiated from the refrigerator. The major source of the noise is radiated by the vibration of the compressor shell. In this study, to identify the dynamic characteristics of compressor shell, a compressor shell is divided into several components and these are analyzed with a commercial FEM(Finite Element Method) package such as MSC/NASTRAN. Using substructure synthesis method, the dynamic characteristics of the total system is identified. The coherence of each component to the total system is computed by using strain and kinetic energy. To increase the frequency of the first resonance mode which is most effective mode to the noise of the compressor shell, the improving strategy of dynamic characteristics is suggested by changing mass and stiffness of the coherence component to the first mode.

  • PDF

An Experimental Study on Convection Heat Transfer in an Oscillating Flow of a Heater Tube for Stirling Cycle Machines (스터링 사이클기기용 가열기 원관내부 왕복유동에서의 열전달에 관한 실험적 연구)

  • 강병하;이건태;이춘식;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1547-1555
    • /
    • 1993
  • An experimental study on convection heat transfer characteristics from a heated tube to an oscillating flow has been carried out, . This problem is of particular interest in the design of heat exchangers in Stirling cycle machines. Experimental system has been developed to measure temporal variations of temperature inside a heater tube during oscillating modes in a Stirling cycle machine. The dependence of temperature distributions and heat transfer rates on the oscillating frequency as well as the swept volume ratio and the mean pressure of a Stirling cycle machine is investigated in detail. The experimental results indicate that the measured temporal variations of temperature become nearly sinusoidal. The amplitude of temperature variation in the core of the tube is much more substantial than that near the tube wall, whereas the reverse is true for pulsating flows. It is also found that the heat transfer rate is increased significantly as the oscillating frequency or oscillating amplitude or the mean pressure in a tube is increased.

Modal and Structural Analysis of Laser Cutter (레이저 절단기의 모드해석과 구조해석)

  • Kyu-Nam Cho;Rae-Young Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.129-134
    • /
    • 1994
  • A Laser Cutter is designed for the precise fabrications in the shipyards recently. The cutter is a gantry type one with specified functions of movability and strength in order to satisfy the workability. The gantry frame should move with a certain velocity in a relatively short time for the proper cutting of the object materials. The gantry is fitted with ball screw and the acceleration field is formed by actuating this ball screw. The relative displacement should be within the allowable design criteria to make sure the precise cutting of the materials by the laser. In this paper, modal and structural analysis for a Laser Cutter which is commonly used in the shipyards, is carried out to check the design criteria of the system. The system is modeled by placing the proper shell and soils finite elements and fictitious mass properties to represent the real one. The way how to extract the loading conditions based on the given velocity criteria of the system is presented. Static structural analysis is performed and the results came out as expected. Modal analysis for finding eigen-values and mode shapes of the system is performed and it is shown that the time dependent dynamic analysis is unnecessary for this system for its operating circumstances.

  • PDF

Shape Oscillation and Detachment of Droplet on Vibrating Flat Surface (진동하는 평판 위의 액적의 형상 진동 및 제거 조건에 대한 연구)

  • Shin, Young-Sub;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.337-346
    • /
    • 2014
  • This study aimed to understand the mode characteristics of a droplet subject to periodic forced vibration and the detachment of a droplet placed on a plate surface. An surface was coated with Teflon to clearly observe the behavior of a droplet. The contact angle between the droplet and surface and the hysteresis were found to be approximately $115^{\circ}C$ and within $25^{\circ}C$, respectively. The coating process was performed in a clean room that had an environment with a low level of contaminants and impurities such as air dust, detergents, and particles. To predict the resonance frequency of a droplet, theoretical and experimental approaches were applied. Two high-speed cameras were configured to acquire side and top views and thus capture different characteristics of a droplet: the mode shape, the detachment, the separated secondary droplet, and the waggling motion. A comparison of the theoretical and experimental results shows no more than 18 discrepancies when predicting the resonance frequency. These differences seem to be caused by contact line friction, nonlinear wall adhesion, and the uncertainty of the experiment. For lower energy inputs, the contact line of the droplet was pinned and the oscillation pattern was axisymmetric. However, the contact line of the droplet was de-pinned as the oscillation became more vigorous with increased energy input. The size of each lobe at the resonance frequency is somewhat larger than that at the neighboring frequency. A droplet in mode 2, one of the primary mode frequencies, exhibits vertical periodic movement as well as detachment and secondary ejection from the main droplet.