• Title/Summary/Keyword: 진동추정식

Search Result 128, Processing Time 0.02 seconds

Estimation of Prestressed Tension on Grouted PSC Tendon Using Measured Elastic Wave Velocity (응력파속도를 이용한 부착식 PSC 텐던의 긴장력 추정)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo;Lee, Il Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.289-297
    • /
    • 2012
  • This study proposes an experimental formula that can estimate the applied tensile stress of a bonded PSC by measuring a longitudinal stress wave velocity of tendon. To develop practical formula, the various bonded PSC specimens are constructed with different levels of prestresses. For all the bonded PSC specimens, the longitudinal impact-echo tests are repeated with various experimental conditions. Considering a few influence factors such as temperature, length and the number of strands, the application of the law of similarity results in a nondemensional experimental formula that could estimate existing tensile stress on tendon by measuring its longitudinal stress wave velocity. Next, a feasibility study of proposed approach has been conducted for a real reactor building containment. The estimated stress levels of two vertical tendons embedded in the nuclear plant are close to their design values.

Analysis on the Characteristics of Rock Blasting-induced Vibration Based on the Analysis of Test Blasting Measurement Data (시험발파 계측자료 분석을 통한 암석 발파진동 특성 분석)

  • Son, Moorak;Ryu, Jaeha;Ahn, Sungsoo;Hwang, Youngcheol;Park, Duhee;Moon, Duhyeong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.23-32
    • /
    • 2015
  • This study examined blast testing measurement data which had been obtained from 97 field sites in Korea to investigate the comprehensive characteristics of rock blasting-induced vibration focusing on the effect of excavation types (tunnel, bench) and rock types. The measurement data was from the testing sites mostly in Kangwon province and Kyungsang province and rock types were granite, gneiss, limestone, sand stone, and shale in the order of number of data. The study indicated that the blasting-induced vibration velocity was affected by the excavation types (tunnel, bench) and bench blasting induced higher velocity than tunnel blasting. In addition, the vibration velocity was also highly affected by the rock types and therefore, it can be concluded that rock types should be considered in the future to estimate a blasting-induced vibration velocity. Furthermore, the pre-existing criteria was compared with the results of this study and the comparison indicated that there was a discernable difference except for tunnel blasting results based on the square root scaling and therefore, further studies and interests, which include the effects of rock strength, joint characteristics, geological formation, excavation type, power type, measurement equipment and method, might be necessarily in relation to the estimation of blasting-induced vibration velocity in rock mass.

Development of Attenuation Equations of ground Motions in the Southern Part of the Korean Peninsula (한반도 남부 지역의 지진동 감쇄식 개발)

  • 노명현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.21-28
    • /
    • 1999
  • The objective of the study is to develop attenuation equations of the ground motions in the southern part of the Korean peninsula. The earthquake source characteristics and the medium properties were estimated from available instrumental earthquake records and used as input parameters. The peak ground accelerations(PGA) and pseudo-velocity response spectra(PSV) were simulated by the random vibration theory. The attenuation equations for the PGA and PSV were constructed in terms of local magnitudes and hypocentral distances.

  • PDF

Flow-Chart for Influence Estimation of Underwater Blasting (수중발파의 영향평가를 위한 Flow-Chart)

  • Park, Sun-Joon;Park, Yeon-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.47-54
    • /
    • 2008
  • In this study, ground vibration values and damping coefficient produced by underwater blasting were measured and analyzed. Equations of vibration, $V=K(SD)^{-0.536}$, were presented from quantitative experiment results. The K Values are classified with 1.507, 2.005 and 2.939 respectively at 50%, 90% and 95% reliability. Also, hydrospace noise in aquafarm and noise in atmosphere as well as ground vibrations were measured, and maximum values of these results were 86.8dB(A), 147.8dB(A), 0.244cm/s, respectively. Equations of hydrospace noise, $SL=293.2SD^{-0.164}$, was presented from quantitative experiment results. Also, the flow-chart for influence estimation and underwater blast design was presented from these results. The results of the study may be applied for the evaluation of the influence on aquafarm as a basic data before having main underwater blasting at construction sites.

Use of Higher Order Frequency Response Functions for Non-Linear Parameter Estimation (고차 주파수응답함수를 이용한 비선형 시스템의 매개변수 추정)

  • 이건명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.40-45
    • /
    • 1994
  • 기계시스템의 비선형특성 해석을 위하여 여러가지 방법이 활용되고 있는데, 이들은 Nyquist 선도의 찌그러짐(distortion), Hilbert 변환, 복원력면(restoring force surface), NARMAX, 고차 주파수응답함수(higher order frequency response function), DPE(direct parameter estimation)를 이용한 방법등이다. 이들중 고차 FRF(frequency response function)는 그 개념이 선형시스템의 FRF와 유사하여 비선형시스템의 해석방법으로서 주목을 받고 있으나 아직은 고차 FRF의 특성에 대한 이론적 연구 단계이고, 고차 FRF로부터 비선형특성을 정량적으로 해석하는 연구는 거의 이루어지지 않고 있다. 다항식으로 표시되는 비선형성을 갖는 시스템이 정현파가진을 받을 때 그 응답의 가진주파수 성분은 가진력진폭과 고차 FRF의 무한급수로 나타낼 수 있다. 가진력의 진폭을 변화시켜가며 응답을 측정하고, 고차항을 무시하면 고차 FRF의 값을 근사적으로 구할 수 있다. 고차 FRF는 비선형 시스템의 매개변수의 식으로 나타낼 수 있으므로 이로부터 비선형 매개변수를 추정할 수 있다. 본 논문에서는 비선형강성과 비선형감쇠를 갖는 1자유도 시뮬레이션 시스템에 이 매개변수 추정법을 각각 적용함으로써 이 방법의 가능성을 고찰하였다.

  • PDF

Measurements and Data Processing for Blast Vibrations and Air-blasts (발파진동 및 발파소음의 측정 및 자료처리)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.29-50
    • /
    • 2015
  • Safe blast criteria based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of blast vibrations. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). In contrast to SRSD scheme, however, the function of maximum charge per delay for CRSD increases without bound after the intersection point of these two functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, it is suggested that CRSD be used within a specified distance slightly beyond the intersection point. On the other hand, there are several attempts that predict vibration level(VL) from the peak particle velocity(PPV) or estimate VL based on the scaled distances without considering their frequency spectra. It appears that these attempts are conducted in blasting contracts only for the purpose of satisfying the environment-related law, which mainly deals with the annoyance aspects of noises and vibrations in human life. But, in principle there could no correlation between peaks of velocity and acceleration over entire frequency spectrum. Therefore, such correlations or estimations should be conducted only between the waves with the same or very similar frequency spectra. Finally, it is a known fact that structural damage due to ground vibration is related to PPV level, the safety level criteria for structures should be defined by allowable PPV levels together with their zero crossing frequencies (ZCF).

A Case Study on the Blasting Analysis of Slope Using Monitored Vibration Waveform (실측진동파형을 이용한 비탈면 발파진동 해석 사례)

  • Park, Do-Hyun;Cho, Young-Gon;Jeon, Seok-Won
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.41-50
    • /
    • 2006
  • Excavation by explosives blasting necessarily involves noise and vibration, which is highly prone to face claims on the environmental and structural aspects from the neighbors. When the blasting carried out in the vicinity of a structure, the effect of blasting vibration on the stability of the structure should be carefully evaluated. In the conventional method of evaluation, an equation for blast vibration is obtained from test blasting which is later used to determine the amount of charge. This method, however, has limitations in use since it does not consider topography and change in ground conditions. In order to overcome the limitations, dynamic numerical analysis is recently used in continuum or discontinuous models, where the topography and the ground conditions can be exactly implemented. In the numerical analysis for tunnels and rock slopes, it is very uncommon to simulate multi-hole blasting. A single-hole blasting pressure is estimated and the equivalent overall pressure at the excavation face is used. This approach based on an ideal case usually does not consider the ground conditions. And this consequently results in errors in calculation. In this presentation of a case study, a new approach of using blast waves obtained in the test blast is proposed. The approach was carried out in order to improve the accuracy in calculating blasting pressure. The stability of a structure in the vicinity of a slope blasting was examined using the newly proposed method.

A Study on the Development for Prediction Model of Blasting Noise and Vibration During Construction in Urban Area (도시지역 공사 시 발파 소음·진동 예측식 개발에 관한 연구)

  • Jinuk Kwon;Naehyun Lee;Jeongha Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.84-98
    • /
    • 2024
  • This study proposed a prediction equation for the estimation of blasting vibaration and blasting noise, utilizing 320 datasets for the blasting vibration and blasting noise acquired during urban blasting works in the Incheon, Suwon, Wonju, and Yangsan regions. The proposed blasting vibration prediction equation, derived from regression analysis, indicated correlation coefficients of 0.879 and 0.890 for SRSD and CRSD, respectively, with an R2 value exceeding 0.7. In the case of the blasting noise prediction equation, stepwise regression analysis yielded a correlation coefficient of 0.911 between the prediction values and real measurements for the blasting nosie, and further analysis to determine the constant value revealed a correlation coefficient of 0.881, with an R2 value also exceeding 0.7. These results suggest the feasibility of applying the proposed prediction equations when environmental impact assessments or education environment evaluation according to urban development or apartment construction projects is performed.

Study of Interrelation between the Predicted and Measured Results of Air Blast and Blast Noise (폭풍압 및 소음의 실측치와 예측치의 상관관계 검토)

  • Park, Jun-Ho;Kang, Choo-Won
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.35-46
    • /
    • 2007
  • The excavation of ground by blasting is widely accepted during construction of the various infrastructures because the cost is relatively low and its process is simple. Although the ground vibration accompanied by the blasting has drawn many theoretical and experimental research interests, the environmental influence of the air blast tends to be overlooked. This means the noise produced from construction sites have been neglected academically even though it is very controversial and hypersensitive case causing many conflicts in environmental problems. In the light of this, this study explores a way of calculation of air blast. Specifically, we measure the actual air blast and explosive noise, and then make the predicted formula of them based on the change of charge per delay using regression analysis. The comparison with the predicted and measured results helps to determine the validity of estimated formula.